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ABSTRACT. Adverse selection is a version of the principal-agent problem that includes monopolist non-
linear pricing, where a monopolist with known costs seeks a profit-maximizing price menu facing a pop-
ulation of potential consumers whose preferences are known only in the aggregate. For multidimensional
spaces of agents and products, Rochet and Choné (1998) reformulated this problem to a concave maximiza-
tion over the set of convex functions, by assuming agent preferences combine bilinearity in the product and
agent parameters with a quasilinear sensitivity to prices. We characterize solutions to this problem by iden-
tifying a dual minimization problem. This duality allows us to reduce the solution of the square example
of Rochet-Choné to a novel free boundary problem, giving the first analytical description of an overlooked
market segment.
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1. INTRODUCTION

The principal-agent problem has provided an important framework for modeling economic questions
involving asymmetric information since the 1970s. In the context of nonlinear pricing, the principal
represents a monopolist who wishes to maximize her total profit over all possible price menus, facing a
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given distribution of agent (i.e., consumer) types, while each consumer aims to optimize his utility by
choosing one product anonymously and paying its price to the monopolist.

The monopolist faces a bi-level optimization problem. Every time she changes the price menu, the
consumers’ choices of products may change in response, resulting in a different distribution of the
products sold and corresponding change to the monopolist’s profit. However, this bi-level optimization
can be reformulated as a (single-level) problem, with nonlinear constraints on the product-price pair to
enforce incentive compatibility and individual rationality. The former condition ensures that the product-
price pair reflects the choices of consumers facing the price menu. The latter reflects the existence of
an outside option, whose price the monopolist cannot control. For example, public transportation might
represent an outside option relative to a vehical-selling monopolist.

Under suitable assumptions on the consumers’ direct utility, this problem can also be reformulated as
a maximization problem with generalized convexity constraints on indirect utilities. This reformulation
exploits the natural duality between the monopolist’s price menu and the agents’ indirect utilities, and
the implementation result that each consumer’s best choice lives in a generalized subdifferential of their
indirect utility function. For unidimensional consumer types, this dual approach can be traced back to
Mirrlees (1971) work on optimal taxation. A dual approach for multidimensional consumer types with
bilinear preference functions was developed by Rochet and Choné (1998), in a landmark contribution
among the vast subsequent literature on mechanism design with multidimensional types. Analogous
implementability, existence, and stability of optimal strategies for more general quasilinear preferences
can be found in Rochet (1987), Carlier (2001) and Figalli et al. (2011) respectively. Such results were
recently extended to fully nonlinear preferences by Nöldeke and Samuelson (2018) and McCann and
Zhang (2019). A control-theoretic approach to the quasilinear case was developed by Basov (2005).

The early literature focuses on the one-dimensional version of such questions, where products are
parameterized by quality and agents by wealth, as in the classical studies of Mirrlees (1971) on taxation
and Spence (1974) on educational signaling. In some cases, explicit solutions can be obtained on interval
domains, as in Mussa and Rosen (1978). Here the principal’s optimization separates the domain of the
agents into two parts: a bottom region where the participation constraint binds; and a top region where
agents choose customized products according to their types. All the agents choose the same product in
the bottom part: the outside option. In one-dimensional cases, the fraction of types choosing the outside
option may be positive or zero, whereas for multidimensional strictly convex sets of types, Armstrong
(1996) showed a non-participation region of positive measure always exists.

Multidimensional versions of the problem, in which both agents and products require several vari-
ables to describe, have proven much thornier to analyze; see e.g. McAfee and McMillan (1988) or
Wilson (1993). Explicit solutions are extremely difficult to obtain except on radially symmetrical do-
mains (Zhang (2018)). One must now solve partial in addition to ordinary differential equations, subject
to the nonstandard convexity constraint arising from incentive compatibility. For example, in the case
of bilinear preferences on the plane, the monotone (scalar-increasing) map from agents to products rep-
resenting agents’ optimal choices must be replaced by the gradient of the agent’s convex indirect utility.
Furthermore, the optimal solution has regions displaying different behaviour according to the rank of
the Hessian of this convex function, as discovered by Rochet and Choné (1998). Between Armstrong
(1996)’s positive bottom fraction of agents who select the outside option, and the product-customizing
top market segment, (where the Hessian matrix of indirect utility has zero versus full rank respectively),
a bunching region can lie, which is foliated by families of agents (isochoice sets) who select the same
product type in the optimal solution, as Rochet and Choné discovered in their two-dimensional square
model. The indirect utility in this region has a Hessian matrix of rank (and corank) 1. Moreover, the
Euler-Lagrage equation of the optimization takes on a different character in each of these regions, so
that an analytical solution to the problem requires matching (or “smoothly pasting”) a solution of a par-
tial differential (Poisson) equation in the top region, to the solution of an ordinary differential equation
in the bunching region. Finding the boundary between these regions, whose geometry is a priori un-
specified, becomes part of the problem: we shall show it does not generally reduce to a point (as in
one-dimension), nor to a line (or hyperplane) as Rochet and Choné hypothesized. Finally, the problem
requires appropriate boundary conditions and is highly sensitive to the shape of the domain.
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The contributions of the present work are two-fold. First we develop a duality theory which char-
acterizes the solution to the multidimensional adverse selection problem, under Rochet and Choné’s
assumptions of bilinearity of agent preference in product type, and quasilinearity in price. Second, we
introduce a new free-boundary problem which characterizes the solution to the Rochet-Choné square
example analytically. This requires us to derive a Euler-Lagrange equation for a segment of the market
overlooked by Rochet and Choné, in which the isochoice segments vary in slope as well as in length, as
suggested by numerical simulations of Mirebeau (2016).

Duality has proved a powerful tool for characterizing solutions to other revenue optimization prob-
lems. For instance, Daskalakis et al. (2017) developed a strong duality theory to find the optimal mech-
anism for selling multiple goods to a single additive buyer, generalizing the single good auction of
Myerson (1981). Later Kleiner and Manelli (2019) provided another approach to this duality. Gian-
nakopoulos and Koutsoupias (2018) studied the optimal (auction) strategy for selling multiple goods to
multiple buyers and found a (different) duality theory for the single bidder case. A duality approach
for multi-bidder multi-item auctions was discovered by Kolesnikov et al. (2022+) in parallel with the
present manuscript; they interpret their dual as a continuous optimal flow problem whose prescribed
divergence second-order stochastically dominates a certain neutral measure inferred from the data. We
hope to convince the reader that the simpler duality relation introduced below is as effective in the
present context.

Although inspired in part by this literature, our duality theory for the monopolist’s optimal pricing
problem differs from the above multi-good auction optimization in several ways:

(a). In the auction setting, each item can only be sold to at most one buyer, resulting in Lipschitz
constraint in the single bidder problem (which becomes a nonlocal constraint on the assign-
ment with multiple bidders), while in the nonlinear pricing model, bunching can occur in which
multiple agents choose the same product.

(b). In the auction settings, each buyer can get multiple goods, while in nonlinear pricing, each buyer
would choose exactly one product which might be the outside option.

(c). In the auction setting, the seller has no manufacturing costs, and thus the objective functional is
linear with respect to the indirect utility, whereas ours is nonlinear.

In this paper, we specify a minimization problem that is dual to the nonlinear pricing problem over
indirect utilities and prove that the primal and dual optima are both attained and their values are equal.
In Section 2, we introduce the multidimensional nonlinear pricing problem, including the dual approach
initiated by Mirrlees (1971) and extended to multidimensional types by Rochet and Choné (1998). Then
we present the main strong duality and attainment results in Section 3. The resulting complementary
slackness conditions characterize the unique optimal solution to the Rochet-Choné model. In Section 4
we describe the analytical solution to the square version of problem detailing three regions: the non-
participation region, the bunching region, and the customization region. It is worth emphasizing that the
bunching region we characterize as the solution to a free boundary problem is not the one described by
Rochet and Choné (1998), which turns out to lack consistency, but instead coincides with the numerical
solution of Mirebeau (2016).

2. A MODEL

2.1. Monopolist’s problem. A monopolist who produces and sells products aims to find the best price
menu, knowing only the manufacturing cost and the distribution of consumer types. Let X ⊂ Rn

denote the set of consumers and Y ⊂ Rn the set of products. Assume X is a compact convex set with a
nonempty interior Int(X) and f : X → [0,∞] be a positive probability density on Int(X). Assume Y
is a closed convex cone.

A measurable map x ∈ X 7→ (y(x), z(x)) ∈ Y × R of agents to (product, price) pairs is called
incentive compatible if and only if x · y(x) − z(x) ≥ x · y(x′) − z(x′) for all x, x′ ∈ X . This
condition ensures agents have no incentive to hide their types when choosing products. The map is
called individually rational if and only if x · y(x)− z(x) ≥ x · y∅ − z∅ for all x ∈ X , where y∅ and z∅
represents the outside option and its price; for convenience we take y∅ = 0 and z∅ = 0 henceforth. This
participation constraint guarantees no individual strictly prefers the outside option to the assignment
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under the (product, price) pair. In the context of bi-level optimization, given a price menu v : Y → R,
the map x ∈ X 7→ (y(x), v(y(x))) is incentive compatible and individually rational if for each x ∈ X ,
y(x) solves the consumer x’s problem of choosing the optimal product to maximize his utility x·y−v(y).

Let c : Rn → R be the manufacturing cost, extended by setting c(y) := +∞ for y 6∈ Y . Denote by
c∗ the Legendre-Fenchel transform of c, i.e.,

(2.1) c∗(y′) := sup
y∈Rn

〈y, y′〉 − c(y).

Assume c is non-negative, continuously differentiable, strictly convex (so c∗∗ = c), c(0) = 0, and
c(y) ≥ a0|y|2 − a1 holds for all |y| ≥M with constants a0,M > 0 and a1 ∈ R.

The monopolist’s problem can be formulated as follows:
supΠ[y, v] :=

∫
X (v(y(x))− c(y(x))) f(x)dx subject to

x ∈ X 7→ (y(x), v(y(x))) is incentive compatible, individually rational
and v : Y → R is lower semicoutinuous with v(y∅) ≤ z∅.

(2.2)

2.2. Dual approach. For any fixed price menu v, define agents’ indirect utility u : X → R as

u(x) = sup
y′∈Y

x · y′ − v(y′).

That is, the indirect utility is the Legendre-Fenchel transform of the price menu. As a supremum of
linear functions, u defined above is convex and thus differentiable almost everywhere by, for instance,
Rademacher’s theorem. Define the subdifferential of u as follows. For any x ∈ X , let

∂u(x) := {y ∈ Rn : x · y − u(x) ≥ x′ · y − u(x′), for all x′ ∈ X}.
When u is differentiable at x, the subdifferential of u at x is a singleton set containing its gradient:
{Du(x)}. Denote by u∅ : X → R the utility of agents from purchasing the outside option, i.e.,
u∅(x) := x · y∅ − z∅ for any x ∈ X . Assume y∅ = 0 and z∅ = 0 so that u∅ ≡ 0. In the context of
Rochet and Choné (1998)’s model, the following lemma and its corollary are well-known: facing any
price menu v, they assert a convex gradient gives the map from each consumer type to the product he
selects.

Lemma 2.1 (Indirect utility encodes products selected). For an agent x ∈ X facing a price menu v,
suppose his indirect utility is attained by an optimal product y ∈ Y . Then y ∈ ∂v∗(x) (i.e., y = Dv∗(x)
if v∗ is differentiable at x).

Proof. By definition of v∗, for any x′ ∈ X , v∗(x′) ≥ x′ ·y−v(y). Since y is an optimal choice for agent
x, one has v∗(x) = x · y− v(y). Therefore, for any x′ ∈ X , x · y− v∗(x) = v(y) ≥ x′ · y− v∗(x′). By
the definition of subdifferential, one has y ∈ ∂v∗(x).

If v∗ is differentiable at x, ∂v∗(x) = {Dv∗(x)}. In this case, y = Dv∗(x). �
As a direct consequence of the above lemma, we have the following result exhibiting the explicit

dependence of agents’ optimal choice on the pricing menu, which could also be obtained independently
from the Envelope theorem.

Corollary 2.2. Let y : X → Y represents the map from an agent to a product that maximizes his utility
facing a price menu v. Then y(x) = Dv∗(x) for almost every x ∈ X .

Proof. Apply Lemma 2.1 to all the agent x where v∗ is differentiable, then the conclusion follows from
the observation that v∗ is differentiable almost everywhere. �

Denote by Ḣ1
f := Ḣ1

f (X;R) the weighted homogeneous Sobolev space of real-valued functions on
X equipped with the inner product

〈u, v〉Ḣ1
f
:=

∫
X
Du(x) ·Dv(x)f(x)dx,

so that elements u, v ∈ Ḣ1
f are identified if u− v = constant on Int(X).
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Let

(2.3) U :=
{
u ∈ Ḣ1

f | u is convex, Du(X) ⊂ Y, and u ≥ u∅ ≡ 0
}

denote the set of admissible indirect utilities that corresponds to the individually rational and incentive
compatible (product, price) pair. Then U is a pointed convex cone, i.e., U ∩ (−U) = {0} and s1u1 +
s2u2 ∈ U for any scalars s1, s2 ≥ 0 and u1, u2 ∈ U .

It is also well-known that the problem (2.2) can be reformulated as the following maximization prob-
lem over indirect utilities as was done in Rochet and Choné (1998):

sup
u∈U

{
Φ[u] :=

∫
X
[x ·Du(x)− u(x)− c(Du(x))] f(x)dx

}
.(2.4)

2.3. Notation. In the following, we introduce some function spaces equipped with integral norms and
fix a few notations to prepare for the analysis in the next section. For p ≥ 1, and Z a Hilbert space, let
Lp
f (X;Z) denote the set of u : X → Z satisfying

(2.5) ‖u‖Lp
f (X;Z) :=

(∫
X
|u(x)|pf(x)dx

)1/p

<∞;

in case Z = R we write Lp
f := Lp

f (X) := Lp
f (X;R). For u ∈ L1

f we define 〈u〉f :=
∫
X u(x)f(x)dx.

Similarly, whenever G1, G2 : X 7→ Rn yield G1 · G2 ∈ L1
f we define 〈G1, G2〉f :=

∫
X G1(x) ·

G2(x)f(x)dx.
Denote by X := L2

f (X;Rn) the weighted Lebesgue space of square-integrable vector fields on X
equipped with the inner product 〈·, ·〉f such that elements G1, G2 ∈ X are equivalent if G1 = G2 holds
f -a.e.. One can check that X and Ḣ1

f are Hilbert spaces.
Except in Section 4, we consider agents’ population density f beyond the case of uniform distribution.

Assume the Poincaré inequality holds with weight f , meaning there exists a constant Cf > 0 such that
u ∈ L1

loc(X) and Du ∈ L2
f (X;Rn) (defined just after (2.5)) imply u ∈ L2

f and〈
(u− 〈u〉f )2

〉
f
≤ Cf

〈
|Du|2

〉
f
.(2.6)

Note that this property holds for the uniform distribution on X .

3. ABSENCE OF DUALITY GAP AND ATTAINMENT

In this section, we begin by presenting a dual infimum, whose value coincides with the principal’s
profit maximization assuming preferences are bilinear. We then demonstrate that the values of the supre-
mum and dual infimum are both attained. From this duality and attainment we obtain necessary and
sufficient conditions which characterize the solutions of both optimization problems, and show both are
attained uniquely.

Define

Γ :=

{
G ∈ X:= L2

f (X,R
n)
∣∣∣ sup
u∈U

∫
X
(x ·Du(x)− u(x)−G(x) ·Du(x)) f(x)dx ≤ 0

}
.(3.1)

By definition, Γ is convex and contains the identity map.
By choosing a price menu (e.g. u∗), the principal aims to maximize her expected profits (2.4):

Φ[u] :=

∫
X
(x ·Du(x)− u(x)− c(Du(x))) f(x)dx,(3.2)

among the resulting indirect utilities u ∈ U .
Our first proposition is a weak duality in which the maximization problem is bounded above by a

convex minimization problem.

Proposition 3.1 (Weak Duality).

sup
u∈U

Φ[u] ≤ inf
G∈Γ

〈c∗(G)〉f .(3.3)
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Proof. For any u ∈ U and G ∈ Γ, one has

Φ[u] :=

∫
X
(x ·Du(x)− u(x)− c(Du(x))) f(x)dx(3.4)

≤
∫
X
(G(x) ·Du(x)− c(Du(x))) f(x)dx(3.5)

≤
∫
X
c∗(G(x))f(x)dx(3.6)

=〈c∗(G)〉f .(3.7)

Here the first inequality is due to the definition of Γ, while the second comes from y · y′ ≤ c(y)+ c∗(y′)
for any y ∈ Y, y′ ∈ Rn. �

This duality result yields the following corollaries:

Corollary 3.2 (Optimality condition). Assume that u and G are feasible for the maximization and min-
imization problems (3.3), respectively. Then Φ[u] = 〈c∗(G)〉f if and only if the following conditions
hold:

1. G(x) = Dc(Du(x)) holds f -almost surely.

2.
∫
X
(x ·Du(x)− u(x)−G(x) ·Du(x)) f(x)dx = 0.

Proof. These conclusions follow from the conditions under which the two inequalities used in the pre-
ceding proof become equalities. �
Corollary 3.3 (Strong duality implies unique optimizers). If ū ∈ U and Ḡ ∈ Γ satisfy Φ[ū] = 〈c∗(Ḡ)〉f ,
then any mimimizer G ∈ Γ of (3.3) satisfies G = Dc(Dū) f -a.e., while any maximizer u ∈ U satisfies
u = ū f -a.e..

Proof. Since Proposition 3.1 asserts Φ[u] ≤ 〈c∗(Ḡ)〉f for all u ∈ U and G ∈ Γ, the assumption
Φ[ū] = 〈c∗(Ḡ)〉f shows ū to be a minimizer and Ḡ to be a minimizer. Any other minimizer G ∈ Γ
satisfiesG(x) = Dc(Dū(x)), f -almost surely, by the previous corollary. Similarly, any other maximizer
u ∈ U satisfies Ḡ = Dc ◦Du hence Du = Dc∗ ◦ Ḡ = Dū f -a.e. (by the strict convexity of c). Now
f > 0 implies u− ū is constant on each connected component of Int(X). Since Int(X) is convex thus
connected, Φ[u] = Φ[ū] implies this constant must vanish. �

We shall next establish strong duality, meaning the values of the maximization and minimization
problems introduced above coincide. An interpretation of this duality is as follows. Compare the mo-
nopolist to a co-operative, which is able to offer its members products y ∈ Y at a prices c(y) given by
the monopolist’s costs. The monopolist’s maximum profit coincides with the utility of such a co-op ,
minimized over all possible distributions of its membership G#f , satisfying the strange constraint that
ifG(x) is the true type of any agent who (irrationally) displays the anticipated behaviour of type x when
faced by the monopolist, then for any price menu u∗ the latter proposes, the expected direct benefit to the
agents carrying out this deception (neglecting their costs) exceeds the monopolist’s expected revenue.

Let us first sketch a proof of the complementary inequality to (3.3), by interchanging the order of the
infimum and supremum to find the saddle in an optimization which is (separately) linear in u but convex
in G:

sup
u∈U

〈x ·Du(x)− u(x)− c(Du(x))〉f

= sup
u∈U

inf
S:Y−→Rn

+

〈x ·Du(x)− u(x)− S(Du(x)) ·Du(x) + c∗(S(Du(x)))〉f

≥ sup
u∈U

inf
G:X−→Rn

+

〈x ·Du(x)− u(x)−G(x) ·Du(x) + c∗(G(x))〉f

= inf
G:X−→Rn

+

〈c∗(G(x))〉f + sup
u∈U

〈x ·Du(x)− u(x)−G(x) ·Du(x)〉f

= inf
G∈Γ

〈c∗ ◦G〉f .
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To justify this argument rigorously requires approximating both problems before applying Fenchel-
Rockafellar duality to obtain an infinite-dimensional version of the von Neumann min-max theorem.
Therefore, recall the following strong duality theorem from (Borwein and Zhu, 2004, Theorem 4.4.3).

Theorem 3.4 (Fenchel-Rockafellar Duality Theorem (Borwein and Zhu, 2004, Theorem 4.4.3)). Let A
and B be Banach spaces, ϕ : A → R ∪ {+∞} and ψ : B → R ∪ {+∞} be convex functions, and
T : A → B∗ be a bounded linear map where B∗ is the Banach space dual to B. Denote by ϕ∗ and ψ∗

the Legendre transforms of ϕ and ψ, respectively, and by T ∗ the adjoint of T . Suppose that ϕ, ψ∗ and T
satisfy

T (domϕ) ∩ contψ∗ 6= ∅,(3.8)

where contψ∗ ⊂ dom(ψ∗) represents the set of all points where ψ∗ is finite and continuous. Then

inf
x∈A

{ϕ(x) + ψ∗(Tx)} = sup
y∈B

{−ϕ∗(T ∗y)− ψ(−y)}.(3.9)

In addition, the supremum in the right hand side is attained if finite.

We apply the above theorem to a perturbed version of both problems. Denote by

Φε[u] := Φ[u]− ε‖u‖Ḣ1
f

=

∫
X
(x ·Du(x)− u(x)− c(Du(x))) f(x)dx− ε〈|Du|2〉

1
2
f

and by

Γε :=
⋂
u∈U

{
G ∈ L2

f (X;Rn)
∣∣∣ ∫

X
(x ·Du(x)− u(x)−G(x) ·Du(x)) f(x)dx ≤ ε〈|Du|2〉

1
2
f

}
.

Theorem 3.5 (Strong duality for perturbed problems). Let ε > 0. Then

max
u∈U

Φε[u] = min
G∈Γε

〈c∗(G)〉f .(3.10)

Remark 3.6 (Optimality conditions and uniqueness). Assume ūε and Ḡε are the corresponding opti-
mizers of the ε-perturbed maximization and minimization problem (3.10), respectively. Then the same
proofs as Corollaries 3.2 and 3.3 yield

• Ḡε(x) = Dc(Dūε(x)) holds f -almost surely.

•
∫
X

(
x ·Dūε(x)− ūε(x)− Ḡε(x) ·Dūε(x)

)
f(x)dx = ε〈|Dūε|2〉

1
2
f .

• The optimizers in (3.10) are uniquely determined f -a.e.

Proof of Theorem 3.5. 1. Define ϕ(G) := 〈c∗(G)〉f for any G ∈ X. For each u ∈ Ḣ1
f , define

ψε(u) :=

{∫
X (x ·Du(x)− u(x)) f(x)dx+ ε〈|Du|2〉

1
2
f , u ∈ −U

+∞, u /∈ −U .
(3.11)

It is easy to see that both ϕ and ψε are convex. Define a linear mapping T : X → Ḣ1
f

∗
such that

∀u ∈ Ḣ1
f , 〈u, TG〉Ḣ1

f
=

∫
X
G(x) ·Du(x)f(x)dx.(3.12)

From the definition, we know T is bounded and the dual map T ∗ : Ḣ1
f → X∗ satisfies 〈T ∗u,G〉f =

〈u, TG〉Ḣ1
f

for any u ∈ Ḣ1
f and any G ∈ X. Thus, for any u ∈ Ḣ1

f ,

ϕ∗(T ∗u) = sup
G∈X

〈G,T ∗u〉f − ϕ(G)

= sup
G∈X

∫
X
G(x) ·Du(x)f(x)dx−

∫
X
c∗(G(x))f(x)dx

=

∫
X
c(Du(x))f(x)dx.

(3.13)
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For any G ∈ X, one has

(ψε)
∗(TG) = sup

u∈Ḣ1
f

〈u, TG〉Ḣ1
f
− ψε(u)(3.14)

= sup
u∈U

∫
X
(−G(x) ·Du(x) + x ·Du(x)− u(x)) f(x)dx− ε〈|Du|2〉

1
2
f(3.15)

=

{
0, if G ∈ Γε;

+∞, otherwise.
(3.16)

Then Hypothesis (3.8) is satisfied since Tx ∈ T (domϕ)∩cont(ψε)
∗. Hence, the Fenchel-Rockafellar

Duality Theorem implies

inf
G∈Γε

〈c∗(G)〉f = inf
G∈X

{ϕ(G) + (ψε)
∗(TG)} = max

u∈Ḣ1
f

{−ϕ∗(T ∗u)− ψε(−u)} = max
u∈U

Φε[u].(3.17)

2. It remains to show that the infimum of the first minimization problem in (3.17) is achieved.
Let G0 be the identity map on X , B := {G ∈ X|〈|G|2〉f ≤ 〈|G0|2〉f} and Γ̃ε := Γε ∩ B. It is clear

that Γ̃ε 6= ∅ since it contains G0. Because Γε is closed, Γ̃ε is weakly compact as is B, which is implied
by the Banach-Alaoglu theorem. In addition, the existence of this minimization problem follows from
the lower semi-continuity of 〈c∗(·)〉f under the same topology.

Claim: 〈c∗(·)〉f is lower semi-continuous under weak topology.
Proof. For any sequence {Gi}∞i=1 on Γε and G∞ ∈ Γε such that Gi

w
⇀ G∞, the convexity of c∗

implies

c∗(Gi(x))− c∗(G∞(x)) ≥ Dc∗(G∞(x))(Gi(x)−G∞(x)),∀x ∈ X.

Thus,
〈c∗(Gi)〉f − 〈c∗(G∞)〉f ≥ 〈Dc∗(G∞), Gi −G∞〉f .

Therefore,
lim inf
i→∞

〈c∗(Gi)〉f − 〈c∗(G∞)〉f ≥ lim inf
i→∞

〈Dc∗(G∞), Gi −G∞〉f = 0.

�

By taking the limit of (3.10), one has the following result:

Theorem 3.7 (Strong duality and attainment). Suppose the density f is positive on Int(X) and satisfies
one of the following: (i) f is bounded below by some positive constant on Int(X); (ii) f is lower
semi-continuous on Int(X). Then the primal supremum and dual infimum are both attained:

max
u∈U

Φ[u] = min
G∈Γ

〈c∗(G)〉f .(3.18)

Remark 3.8 (Necessary and sufficient conditions for optimality). Theorem 3.7 implies u ∈ U is optimal
if and only if there exists G ∈ Γ such that 1-2 of Corollary 3.2 hold; similarly, a feasible G is optimal if
and only there exists a feasible u satisfying 1-2 of Corollary 3.2. From Corollary 3.3, one also sees that
both optimizers in Theorem 3.7 are unique (f -a.e.).

Proof of Theorem 3.7. For each ε � 1, denote by ūε and Ḡε an optimizer of each side in (3.10), re-
spectively. It is clear that there exists constant C1 > 0 such that 〈|Dūε|2〉f ≤ C1 for all ε � 1, since
otherwise lim supε→0+〈|Dūε|2〉f = +∞ and thus

0 = Φε[0] ≤ Φε[ūε] ≤ −〈c(Dūε)〉f + 〈|x|2〉
1
2
f 〈|Dūε|

2〉
1
2
f

implies 0 ≤ lim infε→0+

(
−〈c(Dūε)〉f + 〈|x|2〉

1
2
f 〈|Dūε|

2〉
1
2
f

)
= −∞, which is a contradiction.

1. For all ε� 1,

sup
u∈U

⟨|Du|2⟩f≤C1

Φ[u] ≥ max
u∈U

⟨|Du|2⟩f≤C1

{
Φ[u]− ε〈|Du|2〉

1
2
f

}
(3.19)
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≥ sup
u∈U

⟨|Du|2⟩f≤C1

{
Φ[u]− εC

1
2
1

}
(3.20)

= sup
u∈U

⟨|Du|2⟩f≤C1

Φ[u]− εC
1
2
1 .(3.21)

This implies

sup
u∈U

⟨|Du|2⟩f≤C1

Φ[u] = lim
ε→0

max
u∈U

⟨|Du|2⟩f≤C1

{
Φ[u]− ε〈|Du|2〉

1
2
f

}
(3.22)

= lim
ε→0

max
u∈U

{
Φ[u]− ε〈|Du|2〉

1
2
f

}
.(3.23)

The compactness properties of U ∩ {u ∈ Ḣ1
f : 〈|Du|2〉f ≤ C1} described in Carlier (2002) combine

with the upper semi-continuity of Φ to imply the existence of maximizer. Let ū be a maximizer.
Suppose that

sup
u∈U

Φ[u] > max
u∈U

⟨|Du|2⟩f≤C1

Φ[u].

Then there exists u1 ∈ U and ε > 0 such that Φ[u1]− ε〈|Du1|2〉
1
2
f > Φ[ū]. Thus,

Φ[ūε]− ε〈|Dūε|2〉
1
2
f ≥ Φ[u1]− ε〈|Du1|2〉

1
2
f > Φ[ū] = max

u∈U
⟨|Du|2⟩f≤C1

Φ[u] ≥ Φ[ūε].

This is a contradiction. Thus,

sup
u∈U

Φ[u] = max
u∈U

⟨|Du|2⟩f≤C1

Φ[u].(3.24)

Moreover, ū is also a maximizer of Φ[u] in U . Thus,

max
u∈U

Φ[u] = lim
ε→0

max
u∈U

{Φ[u]− ε〈|Du|2〉
1
2
f } = lim

ε→0
max
u∈U

Φε[u].(3.25)

2. On the other hand, since {ūε}ε is uniformly bounded in W 1,1(ω) for ε � 1 and every convex
ω ⊂⊂ Int(X), by (Carlier, 2002, Corollary 1), there exists a convex function ũ and a subsequence
{ūεk}k such that {Dūεk}k converges to Dũ pointwisely outside a set of zero volume.

Recall that, from the complementary slackness (Remark 3.6), Ḡε = Dc(Dūε) holds fdx-almost
surely. Therefore, {Ḡεk}k converges to Ḡ := Dc(Dũ) fdx-almost surely . Moreover, since Γεk is
closed under the weak topology, Ḡ ∈ Γεk for any k > 0 and thus Ḡ ∈ Γ. Therefore,

lim inf
k→+∞

min
G∈Γεk

〈c∗(G)〉f = lim inf
k→+∞

〈c∗(Ḡεk)〉f ≥ 〈c∗(Ḡ)〉f ≥ inf
G∈Γ

〈c∗(G)〉f ≥ min
G∈Γεk

〈c∗(G)〉f .(3.26)

This implies,

lim inf
k→+∞

min
G∈Γεk

〈c∗(G)〉f = min
G∈Γ

〈c∗(G)〉f ,(3.27)

and Ḡ ∈ argminG∈Γ〈c∗(G)〉f .
3. Taking limits of (3.10) yields

max
u∈U

Φ[u] = min
G∈Γ

〈c∗(G)〉f . �(3.28)
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4. APPLICATION TO MONOPOLIST NONLINEAR PRICING ON THE SQUARE

In this section, we apply the duality theory above to the 2D square model of Rochet and Choné
(1998), whose proposed solution to this model provided a seminal example of the optimality of product-
line bunching in multidimensions, beyond Armstrong (1996)’s desirability of exclusion. More generally,
Rochet and Choné gave an abstract characterization of the unique optimal solution to the multidimen-
sional analog of Mussa and Rosen (1978)’s problem in terms of the existence of suitable Lagrange
multipliers whose positive and negative parts are in convex order on each bunched group of consumers.
Unfortunately, the consequences of this characterization are delicate to work out in examples. Indeed,
some aspects of their predicted solution ū to the 2D square model turn out not to supported by Mirebeau
(2016)’s subsequent numerics. To resolve this discrepancy, in Lemma 4.2 we show that the proposed
solution of Rochet and Choné is not self-consistent; it contradicts their own continuity claim for the
assignment mapDū : X −→ Y , which has been rigorously established up to the boundary of the square
by Carlier and Lachand-Robert (2001). This regularity was subsequently improved in the interior of X
by Caffarelli and Lions (2006+), whose results combined with Carlier and Lachand-Robert’s yield

(4.1) ū ∈ C1(X) ∩ C1,1
loc (IntX).

Using our aforementioned duality along with perturbation techniques from the calculus of variations,
we go on to describe how the conjectured solution can be modified to restore its consistency with both
theoretical and computational predictions, by allowing the bunched lines of consumers freedom to vary
in their direction as well as their length. This leads to a novel free boundary problem in partial differential
equations, as we detail below.

In Section 4.1, we introduce Rochet-Choné’s 2D square model and our proposed solution in terms of
a free boundary problem which allows an overlooked form of bunching to be selected by a significant
fraction of the agents. Section 4.2 applies the strong duality theory of Section 3 above to show that
any convex solution to this free boundary problem is indeed the unique maximizer of Rochet-Choné’s
2D square model. Section 4.3 contrasts our solution to the one originally proposed by Rochet and
Choné (1998), and shows consistency of the latter must fail. In Section 4.4 we interpret our results
economically and relate them to other recent developments. Finally, in Section 4.5 we derive our free
boundary problem from a solution ansatz using the calculus of variations, to show that the optimal payoff
ū satisfies our free boundary problem as soon as it is consistent with the ansatz (which is necessarily
more general than that of Rochet and Choné (1998)). Although the boundary of the region separating
bunching from customization is still selected by matching the values and derivatives of the solution of
an ODE (in the bunching region) to a PDE (in the unbunched region), the geometry of our bunching is
more complicated than Rochet and Choné proposed and the ODE (4.22)–(4.24) derived below which
govern it are new.

4.1. A free-boundary reformulation of Rochet-Choné 2D square model. For a ≥ 0, let the square
X = [a, a + 1]2 denote the set of consumer types equipped with density f(x) ≡ 1 on X . For each
product y ∈ Y = [0,∞)2, let c(y) = 1

2 |y|
2 represent the manufacturing cost. The outside option

is (0, 0) ∈ Y whose price is set to be no greater than 0. Thus the monopolists problem (2.3)–(2.4)
becomes

(4.2) U = {u ∈ Ḣ1
f | u is convex, Du(X) ⊂ [0,∞)2, and u ≥ u∅ ≡ 0}

sup
u∈U

{
Φ[u] :=

∫
X=[a,a+1]2

(
x ·Du(x)− u(x)− 1

2
|Du(x)|2

)
dx

}
.(4.3)

Guided by theoretical and numerical evidence, we follow the strategy of Rochet and Choné (1998), by
making a series of ad hoc assumptions to identify a candidate optimizer ū for (4.2)–(4.3), whose opti-
mality can then be confirmed by duality (thus affirming validity of the ad hoc assumptions a posteriori).

Any convex function u is twice differentiable Lebesgue a.e., hence divides almost all of X into
three different regions Ω0, Ω1, and Ω2, according to the rank (0, 1 or 2) of its Hessian matrix D2u.
The uniqueness of the optimal payoff u = ū established by Rochet and Choné (1998) (also implied
by Corollary 3.2) ensures the resulting regions are symmetrical under reflection x1 ↔ x2 through the
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diagonal. Since they can be interpreted as an excluded region Ω0 of low types (where the participation
constraint binds), a bunching region Ω1 of intermediate types (where incentive compatibility, hence the
convexity constraint on ū, binds), and an unconstrained region Ω2 of high types, we shall assume they
are ordered from the lower-left to the upper-right corner of the square. More precisely we assume there
are upper semicontinuous functions ti.5 : [−1, 1] −→ [2a, 2a + 2] over the antidiagonal, satisfying
t0.5 < t1.5, which parameterize the boundaries between these regions:

{∆ū = 0} ⊂ Ω0 = {(x1, x2) ∈ X : x1 + x2 ≤ t0.5(x1 − x2)}(4.4)

{detD2ū = 0 < ∆ū} ⊂ Ω1 = {(x1, x2) ∈ X : t0.5(x1 − x2) < x1 + x2 ≤ t1.5(x1 − x2)}(4.5)

{detD2ū > 0} ⊂ Ω2 = {(x1, x2) ∈ X : t1.5(x1 − x2) < x1 + x2}(4.6)

with Ωi having connected interior and Ωi ⊂ cl[IntΩi] for each i ∈ {0, 1, 2}. Although the geometry
encoded in this assumption can probably be relaxed to account for subdomains Ωi with boundaries
parameterized in different ways, we do not know how to relax or confirm the topology encoded in
this assumption: namely that Ω1 separates Ω0 from Ω2 and that all three have connected interiors, as
suggested by Mirebeau (2016) and others’ numerics. In the region Ω1, it then follows that all bunches
Ω1∩(Dū)−1(y) are given by line segments with endpoints on the boundary of Ω1, meaning the graph of
ū is a ruled surface: for u ∈ C2(IntX) this is a classical fact, which is extended to the lower regularity
(4.1) available in our context by Cale Rankin in Lemma A.2 below.

So far, our assumptions are consistent with all available theoretical and numerical evidence concern-
ing the problem, but we shall now depart from Rochet and Choné (1998), who suppose all of the bunches
in Ω1 have endpoints on ∂X and cross the diagonal, and hence that ū(x) depends only on t = x1+x2 in
Ω1. Although the affine behaviour of u in the interior of Ω0 rules out the possibility of bunches ending
on ∂Ω0 \∂X , it is perfectly plausible that some of the bunches in Ω1 have endpoints on ∂Ω2. Therefore,
inspired by Mirebeau (2016)’s numerics, we allow for the possibility that some of the bunches in Ω1

have one endpoint on ∂X and the other on ∂Ω2. More precisely, we postulate the existence of a constant
t1.0 ∈ [t0.5(s), t1.5(s)] such that ū depends only on t = x1 + x2 in the subdomain

(4.7) Ω0
1 := {(x1, x2) ∈ Ω1 : x1 + x2 ∈ (t0.5(x1 − x2), t1.0]},

but depends on varying convex combinations of x1 and x2 in the complementary ranges

(4.8) Ω±
1 := {(x1, x2) ∈ Ω1 \ Ω0

1 : ±(x1 − x2) ≥ 0}
of Ω1, below and above the diagonal.

Ω0

Ω0
1

Ω−
1

Ω+
1

Ω2

(
a, x2

)

(a, x̃2)

(a, x̄2)

FIGURE 1. Partition of X

By x1 ↔ x2 symmetry, it suffices to describe ū in just one of the these two regions, say Ω−
1 . From

Lemma A.2 we know Ω−
1 will be foliated by line segments along which ū is affine, also called isochoice
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sets, bunches, or leaves of the foliation. It will prove convenient to parameterize the leaves of this
foliation by their angle θ to the horizontal and their lengths R(θ). The explicit formulation of our
free boundary problem for the solution ū to Rochet and Choné’s square example requires us work out
some details of this parameterization to express equations (4.21)–(4.24) below for the slope m(θ) and
(unknown) left boundary value b(θ) of ū along the leaves of this foliation in Ω−

1 .

Ω−
1

(a, x̃2)

(a, x̄2)

(a, h(θ))

Ω−
1 (θ)

FIGURE 2. Ω−
1

For each x ∈ Ω−
1 , let θ(x) denote the angle the line segment through x makes with the horizontal and

r(x) the distance along it relative to some fixed point (a, h(θ)) which is the endpoint of the segment on
∂X . Inverting this change of variables yields

(4.9) x̄(r, θ) = (a, h(θ)) + r(cos θ, sin θ),

with the Jacobian of this transformation having inverse

(4.10)
∂(r, θ)

∂(x̄1, x̄2)
=

(
cos θ −r sin θ
sin θ h′ + r cos θ

)−1

=
1

h′ cos θ + r

(
h′ + r cos θ r sin θ
− sin θ cos θ

)
so that

dx1dx2 = (r + h′ cos θ)drdθ.(4.11)

The fact that ū is affine along each such segment means there exists real functions m(θ) and b(θ)
(representing the slope and boundary value of u along the segment passing through (a, h(θ)) at angle θ
to the horizontal), so that

(4.12) ˜̄u(r, θ) := ū(x̄(r, θ)) =: b(θ) + rm(θ).

Differentiating with respect to r and θ yields

m(θ) = cos θ
∂ū

∂x1
(x̄(r, θ)) + sin θ

∂ū

∂x2
(x̄(r, θ));(4.13)

m′(θ) = − sin θ
∂ū

∂x1
(x̄(r, θ)) + cos θ

∂ū

∂x2
(x̄(r, θ));(4.14)

b′(θ) = h′(θ)
∂ū

∂x2
(x̄(r, θ))

while inverting (4.13)–(4.14) gives

(4.15) Dū ≡

(
∂ū
∂x1

(x̄(r, θ))
∂ū
∂x2

(x̄(r, θ))

)
=

(
cos θ − sin θ
sin θ cos θ

)(
m(θ)
m′(θ)

)
.
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Therefore, b must satisfy the consistency condition

(4.16) b′(θ) = h′(θ)
∂ū

∂x2
(x̄(r, θ)) = h′(θ)[m(θ) sin θ +m′(θ) cos θ].

Moreover, (4.15) also implies
(

∂ū
∂x1

, ∂ū
∂x2

)
(x̄(·, θ)) is independent of f for each θ, which coincides

the fact that all the types of consumers on this line segment x̄(·, θ) would choose the same product
Du ◦ x̄(·, θ). On Ω−

1 , combining (4.15) and (4.10) with the chain rule yields

(4.17) D2ū(x̄(r, θ)) ≡

(
∂2ū
∂x2

1

∂2ū
∂x1∂x2

∂2ū
∂x2∂x1

∂2ū
∂x2

2

)
=

m′′ +m

h′ cos θ + r

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)
.

We now construct the optimal solution ū = ui on each set Ωi as follows. Given t1.0 = a + x̃2 with
h = x̃2 ∈ [a, a+ 1] to be determined:

i). On Ω0 = {(x1, x2) ∈ [a, a+ 1]2 : x1 + x2 ≤ a+ x2} with x2 =
a+

√
4a2+6
3 , one has

ū ≡ 0.(4.18)

ii). On Ω0
1 = {(x1, x2) ∈ [a, a+ 1]2 : a+ x2 ≤ x1 + x2 ≤ a+ x̃2}, we have

ū(x1, x2) =
3

8
(x1 + x2)

2 − a

2
(x1 + x2)−

1

2
ln(x1 + x2 − 2a) + C0,(4.19)

where C0 = −2a2+3+2a
√
4a2+6

12 + 1
2 ln

(
−2a+

√
4a2+6

3

)
. From (4.19) we can calculate the value

of ū and Dū on ∂Ω0
1 ∩ ∂Ω

±
1 , which gives the boundary conditions appearing on the right hand

side of (4.21) and (4.24) below, in view of the known regularity (4.1).
iii). Index each isochoice segment in Ω−

1 by its angle θ ∈ (−π
4 , θ̄] where θ̄ = π

2 for convenience. Let
(a, h(θ)) denote its left-hand endpoint and parameterize the segment by distance r ∈ [0, R(θ)]
to the point (a, h(θ)). Along this segment of length R(θ) assume

(4.20) u−1

(
(a, h(θ)) + r(cos θ, sin θ)

)
= m(θ)r + b(θ).

For h := x̃2 ∈ [a, a+1] andR :
[
−π

4 ,
π
2

]
→
[
0,
√
2
)

upper semicontinuous withR
(
−π

4

)
= 1√

2
(h− a),

solve

(4.21) m(−π
4 ) = 0, m′(−π

4 ) =
√
2 ∂ū

∂x1

(
a+h
2 , a+h

2

)
such that

(4.22) (m′′(θ) +m(θ)− 2R(θ))(m′(θ) sin θ −m(θ) cos θ + a) =
3

2
R2(θ) cos θ.

Then set

h(θ) = h+
1

3

∫ θ

−π/4
(m′′(ϑ) +m(ϑ)− 2R(ϑ))

dϑ

cosϑ
,(4.23)

b(θ) = ū(a, h) +

∫ θ

−π/4
(m′(ϑ) cosϑ+m(ϑ) sinϑ)h′(ϑ)dϑ.(4.24)

Given h̄ and R, the triple (m, b, h) satisfying (4.22)–(4.24) exists and is unique provided
m′(θ) sin θ −m(θ) cos θ + a 6= 0 and R is locally Lipschitz where positive. Subject to these
conditions, the shape of Ω−

1 and the value of u−1 there will be uniquely determined by any h and
R :

(
−π

4 ,
π
2

]
→
[
0,
√
2
)
. We henceforth restrict our attention to choices of h and R for which

the resulting set Ω−
1 lies above the diagonal. In this case Ω+

1 and the value of ū = u+1 on Ω+
1 are

determined by reflection symmetry x1 ↔ x2 across the diagonal. Together, u±1 and/or (4.19)
define ū = u1 on Ω1 and provide the boundary data on ∂Ω1 ∩ ∂Ω2 for the Poisson equation
(4.25) below.
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iv). On Ω2 = cl(X \ (Ω0 ∪ Ω1)) where Ω1 = Ω0
1 ∪ Ω±

1 , solve:
∆u2 = 3, on Int(Ω2);

(Du2(x)− x) · n⃗(x) = 0, on ∂Ω2 ∩ ∂X;

u2 − u1 = 0, on ∂Ω1 ∩ ∂Ω2.

(4.25)

v). For h ∈ [a, a + 1] and R :
[
−π

4 ,
π
2

]
→
[
0,
√
2
)
, the mixed Dirichlet-Neumann Poisson problem

(4.25) has a unique solution u2 as long as Ω2 is Lipschitz. We finally select h and R :
[
−π

4 ,
π
2

]
→[

0,
√
2
)
, or equivalently the shape of Ω−

1 and hence the Lipschitz domain Ω2, by the additional require-
ment that u2 satisfy the Neumann condition

(4.26) D(u2 − u1) · n⃗(x) = 0, on ∂Ω1 ∩ ∂Ω2.

This is the free boundary problem which needs to be solved; (4.26) is necessary for the disjointly defined
functions ui on Ωi to piece together to form ū ∈ C1(X), as required by (4.1).

Heuristically, the numbers of equations and unknowns coincide: our freedom to select ∂Ω2 \ ∂X is
precisely constrained by the compatibility condition (4.26) on it. This suggests that the free boundary
problem is neither over- nor underdetermined, and should admit a solution: i.e. a quadruple (h̄, R, u±1 , u2)
that solves (4.22) – (4.26), or equivalently a triple (h̄, R, u) that solves (4.18) – (4.26). If the resulting
u is admissible (4.2), our next theorem shows it to be the unique optimal solution of the Rochet-Choné
model on the square.

4.2. Sufficiency: any convex solution of our free boundary problem is the unique optimizer. The
following theorem shows any solution to the free boundary problem described above which is admissible
(4.2) is the unique optimal solution to the monopolist’s profit maximization problem on the square.

Theorem 4.1 (Free boundary solutions optimize if convex). If ū ∈ U satisfies (4.18) – (4.26) and both
ū and Ω2 are Lipschitz, then ū is the unique maximizer to (4.3).

Proof of Theorem 4.1. Our duality result, Theorem 3.7, asserts that if
(i) Dū ∈ Γ from (3.1) and

(ii) Φ[ū] :=
∫
X [x ·Dū(x)− ū(x)− 1

2 |Dū(x)|
2]dx = 〈12 |Dū|

2〉f=1,
then ū is the unique (Lebesgue-a.e.) maximizer of (4.2)–(4.3).

Thus, it is sufficient to show (i) that∫
X
[x ·Du(x)− u(x)−Dū(x) ·Du(x)]dx ≤ 0, for all u ∈ U(4.27)

and (ii) that equality holds at u = ū. Let us remark that any convex Lipschitz function has a distributional
Hessian which is a matrix-valued measure on X of finite total mass. This provides sufficient regularity
to just the necessary integrations by parts.

Using (4.9) to define Ũ(r, θ) := u(x̄1(r, θ), x̄2(r, θ)) + u(x̄2(0, θ), x̄1(r, θ)), and the Lipschitz con-
tinuity of the convex function ū and Ω2 to integrate by parts, combining the area element (4.11) with
expressions for the gradient (4.15) and Laplacian (4.17) of ū in Ω−

1 we find∫
X
[x ·Du(x)− u(x)−Dū(x) ·Du(x)]dx(4.28)

=

∫
X
(∆ū(x)− 3)u(x)dx+

∫
∂X

〈x−Dū(x), n⃗(x)〉u(x)dS(x)(4.29)

=− 3

∫
Ω0

u(x)dx−
∫
∂Ω0∩∂X

au(x)dS(x) +

∫
Ω0

1

(∆ū(x)− 3)u(x)dx(4.30)

+

∫
∂Ω1∩{x2=a}

(
∂ū

∂x2
− a

)
u(x1, a)dx1 +

∫
∂Ω1∩{x1=a}

(
∂ū

∂x1
− a

)
u(a, x2)dx2(4.31)

+

∫ θ̄

−π
4

∫ R(θ)

0

[
m(θ) +m′′(θ)− 3(h′(θ) cos θ + r)

]
Ũ(r, θ)drdθ(4.32)
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+

∫ θ̄

−π
4

(
m(θ) cos θ −m′(θ) sin θ − a

)
Ũ(0, θ)h′(θ)dθ(4.33)

where (4.25)–(4.26) have been used to show that the contributions from ū = u2 on Ω2 and its boundary
are cancelled by the boundary contributions of ū = u1 on ∂Ω1 ∩ ∂Ω2. Here we may take θ̄ = π

2 or
θ̄ = sup{θ ∈ [−π

4 ,
π
2 ] | R(θ) > 0}.

From the explicit formula of ū on Ω0∪Ω0
1, it is not hard to see that (4.30)+ (4.31) ≤ 0 for any u ∈ U

where equality holds for u = ū. To complete the proof, without loss of generality, we only need to show
(4.32) + (4.33) ≤ 0 for all u ∈ U and equality holds for u = ū.

Since h satisfies (4.23), it follows that

(4.32) =
∫ θ̄

−π
4

∫ R(θ)

0
(2R(θ)− 3r) Ũ(r, θ))drdθ

=

∫ θ̄

−π
4

∫ R(θ)

0

(
−2R(θ)r +

3r2

2

)
∂Ũ

∂r
(r, θ)drdθ +

∫ θ̄

−π
4

1

2
R2(θ)Ũ(R(θ), θ))dθ.

Using the fact that m also satisfies (4.22) we deduce

(4.33) = −
∫ θ̄

−π
4

1

2
R2(θ)Ũ(0, θ)dθ.

Thus,

(4.32) + (4.33)

=

∫ θ̄

−π
4

∫ R(θ)

0

(
−2R(θ)r +

3r2

2

)
∂Ũ

∂r
(r, θ)drdθ +

∫ θ̄

−π
4

1

2
R2(θ)(Ũ(R(θ), θ)− Ũ(0, θ))dθ

=

∫ θ̄

−π
4

∫ R(θ)

0

(
1

2
R2(θ)− 2R(θ)r +

3r2

2

)
∂Ũ

∂r
(r, θ)drdθ

Denote ζ(r, θ) := 1
2R

2(θ)−2R(θ)r+ 3r2

2 . Then, for each θ ∈ [−π
4 , θ̄], one has (R(θ)−3r)ζ(r, θ) ≥ 0

so ζ changes sign at r = 1
3R(θ). Moreover

∫ R(θ)
0 ζ(r, θ)dr = 0. Since u is convex, we know ∂Ũ

∂r (·, θ) is
increasing for each fixed θ. This implies

ζ(r, θ)
∂Ũ

∂r
(r, θ) ≤ ζ(r, θ)

∂Ũ

∂r

(
R(θ)

3
, θ

)
, for all (θ, r) ∈ [−π

4
, θ̄]× [0, R(θ)].

Therefore,

(4.32) + (4.33) =
∫ θ̄

−π
4

∫ R(θ)

0
ζ(r, θ)

∂Ũ

∂r
(r, θ)drdθ

≤
∫ θ̄

−π
4

∫ R(θ)

0
ζ(r, θ)

∂Ũ

∂r

(
R(θ)

3
, θ

)
drdθ

=

∫ θ̄

−π
4

∂Ũ

∂r

(
R(θ)

3
, θ

)∫ R(θ)

0
ζ(r, θ)drdθ = 0.

Note that when u = ū, for any θ ∈ [−π
4 , θ̄], one has ∂Ũ

∂r (·, θ) = 2m(θ) and
∫ R(θ)
0 ζ(r, θ)dr = 0. In

this case,

(4.32) + (4.33) = 2

∫ θ̄

−π
4

∫ R(θ)

0
ζ(r, θ)m(θ)drdθ = 2

∫ θ̄

−π
4

m(θ)

∫ R(θ)

0
ζ(r, θ)drdθ = 0

as desired. �
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4.3. Comparison of our solution to Rochet and Choné’s: an overlooked market segment. In the
preceding sections, we have established a free boundary problem corresponding to the profit maximiza-
tion problem and reduced the process of characterizing the maximizer to that of verifying the existence
of an admissible (i.e. convex) Lipschitz solution to this free boundary problem. Let us now compare our
proposed solution to that of Rochet and Choné.

Ω0

Ω1

Ω2

FIGURE 3. Partition of X according to the rank of D2ū given in Rochet and Choné (1998)

As shown in Figure 3, Rochet and Choné (1998) claimed that the regions (4.4)–(4.6) where the
Hessian has rank i ∈ {0, 1, 2} are separated by two segments parallel to the anti-diagonal, so Ω1 =

{(x1, x2) ∈ X : t0.5 < x1 + x2 ≤ t1.5} with t0.5 = 4a+
√
4a2+6
3 and t1.5 = 2a +

√
6
3 . Thus they do not

consider the possibility of a non-empty subset Ω±
1 ⊂ Ω1 where ū(x) does not just depend on x1 + x2

(nor any system of equations comparable to (4.20)–(4.24), which are enunciated here for the first time).
Apart from that, their proposed solution is identical to ours, except that they fail to take into account
that enforcing both the Dirichlet and Neumann conditions (4.25)–(4.26) on the line separating Ω2 from
Ω3 overdetermines the Poisson problem. As a result, we now show their solution to be inconsistent
with the continuous differentiability (4.1) up to the boundary which Carlier and Lachand-Robert (2001)
established.

Lemma 4.2 (An overlooked market segment). If ū ∈ U satisfies (4.18) – (4.26) but Ω±
1 have zero area,

then ū 6∈ C1(X) (hence cannot maximize (4.3)).

Proof. Rochet and Choné (1998) showed that if ū ∈ U satisfies (4.18) – (4.26) but Ω±
1 has zero area,

then
Ω1 = {(x1, x2) ∈ X | t0.5 ≤ x1 + x2 ≤ t1.5}

is bounded by t0.5 = 4a+
√
4a2+6
3 (as in Lemma 4.8 below) and t1.5 = 2a+

√
6
3 .

Differentiating (4.19) at x1 + x2 = t1.5 implies their solution to (4.25) also satisfies

(4.34) Dū(x) = (a, a) on ∂Ω1 ∩ ∂Ω2.

Assume that Rochet and Choné’s solution of (4.25) exists, and that the resulting ū ∈ C1(X) is convex,
as required for ū ∈ U . This convexity implies ūx1x1 ≥ 0 on Int(Ω2), hence the Poisson equation implies
ūx2x2 ≤ 3 there.

Set x′ = (a, a+
√
6
3 ) ⊂ ∂X ∩ ∂Ω1 ∩ ∂Ω2. From (4.34), ūx2(x

′) = a. From (4.1), there exists a point
x′′ ∈ Int(Ω2) that has the same x2 coordinate with x′ such that ūx2(x

′′) ≤ a+ 1
10 .

Denote by x′′′ = (x′′1, a + 1) ∈ ∂X the point on the top edge of the square having the same x1
coordinate as x′′. Then the Neumann condition (4.26) implies ūx2(x

′′′) = a+ 1.
But

ūx2(x
′′′)− ūx2(x

′′) =

∫ a+1

a+
√

2/3
ūx2x2(x

′′
1, x2)dx2

≤ 3[1−
√

2/3)]

<
3

5
,

contradicting ūx2(x
′′′)− ūx2(x

′′) ≥ (a+ 1)− (a+ 1
10) =

9
10 .
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This contradiction shows the C1 differentiability of the maximizer established up to the boundary
by Carlier and Lachand-Robert (2001) is inconsistent with the convexity of Rochet and Choné (1998)’s
alleged solution to (4.18) – (4.26) in which Ω±

1 have zero area. �

Motivated by Rochet and Choné (1998), different numerical approaches to variational problems with
convexity constraints have been proposed by a number of authors: Carlier et al. (2001), Ekeland and
Moreno-Bromberg (2010), Oberman (2013), Mérigot and Oudet (2014), and Carlier and Dupuis (2017).
Our observation is supported by these numerics: simulations carried out by Mirebeau (2016) in particular
highlight that the boundary between the rank-1 and rank-2 regions of D2ū (i.e., the boundary between
Ω1 and Ω2 shown in the left picture of Figure 4) is not a line segment. Moreover, in the same paper
Mirebeau also showed that the corresponding products, purchased by consumers on this boundary under
the optimal pricing menu, form the non-zero curvature part of the red curve (as the boundary of the
yellow/green region) in the right picture of Figure 4. In the left picture of Figure 4, the two ends of the
boundary between Ω1 and Ω2 bend towards the anti-diagonal, providing more room forDū to grow. Still
our Lemma 4.2 sheds new light by showing the optimal ū must assign positive area to the overlooked
regions Ω±

0 for any separation a > 0 between the normalized square of consumer types and the origin.

FIGURE 4. Numerics from Mirebeau (2016). Left: level sets of detD2ū with ū = 0 on
Ω0 and detD2ū = 0 on Ω0∪Ω1; Right: distribution of products sold by the monopolist.

4.4. Economic interpretation and related phenomena. Let us now discuss a few aspects of our pro-
posed solution. Recall that the optimal indirect utility ū is related to the optimal price menu v̄ through
the Legendre transform (2.1). More precisely, letting u+ be the largest extension of ū from X = [0, 1]2

to R2 which remains convex and coordinatewise non-decreasing, so that ∇u+(R2) ⊂ Y = [0,∞]2,
Theorem 4.6 of Figalli et al. (2011) shows

(4.35) v̄ ≥ u∗+ on Y = [0,∞]2, with equality on∇ū(X),

so v̄(y) = ū∗+(y) for each product y actually sold.
It is well-known that any failure of u to be strictly convex at x (in direction p) corresponds to a failure

of u∗ to be differentiable at y = ∇u(x) (except in directions p⊥) and vice versa; e.g. Rockafellar
(1970). For example, the differentiability of u+ which follows from (4.1) implies that v̄ coincides
with the restriction to ∇ū(X) of the strictly convex function u∗+. More significantly, for any bunch
(∇ū)−1(y) consisting of more than one point, differentiability of u∗+ and hence v̄ fails at y. Thus, on
the red part ∇ū(Ω0

1) of the diagonal depicted in Figure 4 (corresponding to the lower bunching region),
v̄ is differentiable only in the diagonal (and not the transversal) directions. Similarly, along the upper
bunching regions ∇ū(Ω±

1 ), v̄ cannot be extended differentiably across the boundary of ∇ū(X); i.e. v̄
17



may be tangentially but not transversally differentiable along the corresponding red curves in Figure 4.
In economic terms, if one tries to extend v̄ differentiably across either of the red curves bounding ∇u(X)
at y, options which the monopolist does not wish to produce would be priced attractively enough to be
chosen by some of the types in the bunch ∇u−1(y) and their neighbours, an adverse selection which
spoils maximality of the monopolist’s profits. Alternatively: the price singularity caused by failure of the
inner and outer normal derivatives of v̄ to agree at those boundary points y of ∇ū(X) where bunching
occurs, leads a positive fraction Area[Ω±

1 ] of agents to select products on each of the red curves. As in
Chiappori et al. (2017), we expect it is possible to derive a differential equation reflecting the fact that
the market must clear, by relating the local discrepancy between the inner and outer normal derivatives
of v̄ (or more precisely, of u∗+ ≤ v̄) at such points y to the one-dimensional density of products which
the monopolist should produce along the red curves at y.

Let us also remark that in a recent investment-to-match taxation model proposed by Boerma et al.
(2022+), simultaneously and independently of the present work, a similar phenomenon has been numer-
ically observed and discussed: in their terminology and transformed coordinates, Ω1 decomposes into
a blunt bunching region Ω0

1 in which the optimal product line does not differentiate between buyers ac-
cording the sign x1−x2 distinguishing their dominant trait, as opposed to the targeted bunching regions
Ω±
1 in which the optimal product line sorts along the dimension of their dominant trait and bunches in

the other dimension. In our case, the two regions can also be distinguished by the fact that the indirect
utility ū(x) is constant on each bunch in the blunt bunching region Ω0

1, whereas it varies along generic
bunches in the targeted bunching region Ω±

0 since (4.22) ensures the slope m of ū along the segment
(∇ū)−1(y) cannot generally vanish.

4.5. Necessity: a conditional argument that the optimizer satisfies our free boundary problem.
The new form of free-boundary problem whose solution we have just shown to optimize the Rochet and
Choné (1998) model on the square may appear mysterious. We now motivate it by deriving the equa-
tions to be satisfied by the profit-maximizing payoff ū using perturbation arguments from the calculus
of variations. Outside Ω±

1 this reaffirms what was found by Rochet and Choné; inside Ω±
1 it is new.

However, this derivation depends (a) on ū satisfying the ansatz that X decomposes into three regions
Ωi ⊂ cl[IntΩi] with connected interiors ordered ordered along the diagonal (4.4)–(4.6) according to
the rank i of D2ū; (b) that Ω1 is further subdivided (4.7)–(4.8), with ū being a function of x1 + x2 on
segments which foliate Ω0

1, while being affine along segments which start at ∂X and end on ∂Ω2 whose
slope tan θ varies monotonically (and boundary intercept h(θ) increases locally uniformly) in Ω−

1 ; and
(c) that ∆ū is bounded away from zero on each compact subset of Int(Ω1), while both ∆ū and detD2ū
are bounded away from zero on each compact subset of Ω2. These hypotheses are consistent with all
prior theoretical and numerical results concerning the problem that we know of.

For each fixed y ∈ Y , the isochoice set

Ω(y) := {x ∈ X : ū(x) = x · y − ū∗(y)}
= {x ∈ X : ū(x) ≤ x · y − ū∗(y)}
= X ∩ ∂ū∗(y)

is convex, being a level set of the convex function x ∈ X 7→ ū(x) − x · y. On Ω1 := Ω0
1 ∪ Ω−

1 ∪ Ω+
1 ,

Lemma A.2 guarantees these isochoice sets consist of line segments whose endpoints lie on ∂Ω1; here
Ω0
1 corresponds to the region where all isochoice sets are parallel to the anti-diagonal. On Ω2, each

isochoice set is a 0-dimensional convex set and thus a point. See Figure 1 for the regions in X and their
boundaries.

4.5.1. Details on Ω0 and Ω0
1. In the sequel, we first have a close look at the behavior of ū on Ω0 and Ω0

1.
The next lemma shows either the exclusion region Ω0 or its complement X \Ω0 is an isosceles triangle.
See the figures below for these two possibilities.

Lemma 4.3 (Shape of exclusion region). Under ansatz (a)–(c), Ω0 surrounds the lower left corner (a, a)
of the squareX = [a, a+1]2, and either Ω0 or its complement is an isosceles triangle. Moreover, ū ≡ 0
on Ω0, and Ω0

1 6= ∅ in (4.7).
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Ω0

(
a, x2

)

(a) Case (i)

Ω0

(
x1, a + 1

)

(b) Case (ii)

FIGURE 5. Shape and position of Ω0: two possibilities

Proof. The known regularity (4.1) is sufficient to ensure ū is affine on the (connected) interior of
Ω0 ⊂ cl[IntΩ0], since its Hessian vanishes there. By symmetry, Du(Ω0) = (const, const); unless
this gradient is zero, max{ū− ϵ, 0} will generate larger profits than ū, hence ū = 0 on Ω0 and the latter
is a convex set which is reflection symmetric around the diagonal (by the uniqueness of optimizer as-
serted e.g. in Corollary 3.2). Recall (4.4) implies (a, a) ∈ Ω0. Choose a point x′ = (d, d) ∈ ∂Ω0\(a, a).
Our ansatz (a) implies x′ ∈ ∂Ω1, hence is approximated by points xk on the diagonal in the interior of
Ω1. Our ansatz (b) implies each point xk belongs to a segment in Ω1 symmetric around the diagonal
with endpoints on ∂Ω1 on which ū is a non-zero constant. For sufficiently large k, the endpoints of these
segments cannot lie on cl[Ω2] (which is disjoint from cl[Ω0] by hypotheses (4.4)–(4.6)). Nor nor can
they lie on Ω0, since ū(xk) 6= 0. Thus the endpoints must lie on ∂X , hence Ω0

1 6= ∅. The limit of these
segments is a boundary segment of Ω0 parallel to the antidiagonal and starting and ending on ∂X . �

From now on, we continue the following analysis based on Case (i). The same characterization
argument works equally well in Case (ii). Lemma 4.8 will specify x2 and eliminate the second case.

Since Ω0
1 represents the region where all equivalence classes are parallel to the anti-diagonal, by

symmetry, we know Dū(Ω0
1) is a subset of the diagonal y1 = y2 in the space Y of products. Denote by

n⃗1 the unit direction parallel to the anti-diagonal of X . Then ∂n⃗1
ū = 0 on Ω0

1. A perturbation argument
on the function class where the directional derivatives along n⃗1 vanish now yields the following lemma.

Lemma 4.4 (Lower bunching region). On Ω0
1, the Euler-Lagrange equation for (4.2)–(4.3) under ansatz

(a)-(c), implies

ū(x1, x2) =
3

8
(x1 + x2)

2 − a

2
(x1 + x2)− C1 ln(x1 + x2 − 2a) + C0,

where C0 = −3
8(x2 + a)2 + a

2 (x2 + a) +C1 ln(x2 − a) and C1 =
3
4(x2)

2 − 1
2ax2 −

1
4a

2 are constants.

Proof of Lemma 4.4. Since ∂n⃗1
ū = 0 on Ω0

1, denote ū(x1, x2) := g(x1+x2). The hypothesized positive
lower bound (c) for g′′ ensures g can be perturbed within U by any smooth function h(x1 + x2) on Ω0

1

vanishing in a neighbourhood of ∂Ω0
1 ∩ Int(X). This perturbation yields(

2− 2g′′(t)
)
(t− 2a) + t− 2g′(t) = 0, on x2 + a < t < x̃2 + a,(4.36)

in the distributional sense, hence g ∈ C1,1
loc on this interval. With boundary conditions g(x2 + a) =

0 = g′(x2 + a), it is not hard to find the explicit formula of g by solving the above ordinary differential
equation (ODE). �

From the explicit solution above, one can see that the optimal solution is constant along the isochoice
segments in Ω0

1 and that the C1,1
loc (IntX) regularity provided by Caffarelli and Lions (2006+) cannot be

improved to C2
loc(IntX) in any neighbourhood of the segment ∂Ω0 ∩ ∂Ω1.
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4.5.2. A verification of the Euler-Lagrange equation on Ω2.

Lemma 4.5 (Customization region for top types). If ū ∈ U optimizes the monopolist’s profits (4.3)
under ansatz (a)-(c), then it satisfies{

∆ū = 3, on Int(Ω2);

(Dū(x)− x) · n⃗(x) = 0, on ∂X ∩ ∂Ω2.
(4.37)

Proof of Lemma 4.5. Let v be any smooth function supported on a compact subset of Ω2. The hypothe-
sized lower bound (c) for D2ū in the support of v ensures ū + εv ∈ U for |ε| � 1. Since ū is optimal,
0 = lim

ε→0

Φ[ū+εv]−Φ[ū]
ε implies

0 =

∫
Ω2

[(x−Dū(x)) ·Dv(x)− v(x)]dx

=

∫
Ω2

(∆ū(x)− 3)v(x)dx+

∫
∂Ω2

〈x−Dū(x), n⃗(x)〉v(x)dS(x).

Since ū is convex, its continuous differentiability (4.1) to the boundary provides sufficient regularity to
justify this computation. Noting that Ω1 ⊂ cl[IntΩ1] and (4.4)–(4.6) give #(cl[∂X ∩ Ω2] \ Ω2) = 2,
the arbitrariness of v on compact subsets of Ω2 yields the Poisson Neumann problem (4.37) in both the
distributional and (noting (4.1)) the pointwise a.e. senses. �

4.5.3. The ODE implied by the Euler-Lagrange equations on Ω−
1 . Recall by symmetry and uniqueness

that the solution ū is symmetric across the diagonal. Without loss of generality, we may therefore focus
on Ω−

1 rather that Ω+
1 . Our ansatz (b) assumes Ω−

1 is foliated by line segments x̄(·, θ) along which the
optimizing payoff ū is affine (4.12). Taking Ω±

1 to be held fixed for the moment, there are two types of
functions we need to consider for perturbations around this optimizer.

1. Outer perturbations ū+ εw where w is affine along the same segments (4.9), i.e.

(4.38) w̃(r, θ) := w(x̄(r, θ)) =: w0(θ) + rw1(θ).

2. Inner perturbutations: functions ūε that are affine on the segments of perturbed foliations with
coordinates x̄ε(r, θ) := (a, h(θ) + εh̃(θ)) + r(cos θ, sin θ).

Proposition 4.6 (Outer perturbations on upper bunching region). Let ū be the maximizer of (4.3). Under
ansatz (a)-(c), Ω−

1 is foliated by line segments along which ū is affine. If each fixed leaf of the foliation
is parameterized by {x̄(r, θ) = (a, h(θ)) + r(cos θ, sin θ) : r ∈ [0, R(θ)]}, while the different leaves
are parameterized by θ ∈ (−π

4 , θ̄], then each segment Ω−
1 (θ) := {x̄(r, θ) : r ∈ [0, R(θ)]} corresponds

to a length R(θ) bunch of agents who prefer the same product. Moreover, ū(x̄(r, θ)) = m(θ)r + b(θ)
satisfies

0 = β(θ) +
(
2h′(θ) sin θ − h′′(θ) cos θ

) ∫ θ̄

θ
α(ϑ)dϑ+ α(θ)h′(θ) cos θ on

(
−π
4
, θ̄
)
,(4.39)

where α(θ) := (m(θ) +m′′(θ)− 3h′(θ) cos θ)R(θ)− 3
2R

2(θ) + (m(θ) cos θ −m′(θ) sin θ − a)h′(θ)

and β(θ) := 1
2 (m(θ) +m′′(θ)− 3h′(θ) cos θ)R2(θ)−R3(θ).

Proof of Proposition 4.6. The regularity (4.1) known for ū combines with Lemma A.2 to give the folia-
tion of Ω1. Suppose the foliation can be parameterized by (4.9) in Ω−

1 , with r ∈ [0, R(θ)], where all the
leaves of the foliation intersect ∂X and each leaf corresponds to a line segment at an angle θ ∈ (−π

4 , θ̄]
to the horizontal. Now consider perturbations ū + εw of ū which are affine (4.38) along the same seg-
ments. In the interior of R−1((0,∞)), we are free to prescribe any (C2 smooth) w1(θ), but, similarly to
(4.16), the choice of w1(θ) determines w0(θ) up to an additive constant:

(4.40) w′
0(θ) = h′(θ)

∂w

∂x2
(x̄(r, θ)) = h′(θ)[sin θw1(θ) + cos θw′

1(θ)],

i.e., apart from an additive constant of integration, w0 is the linear image of w1 under a particular
integro-differential operator (and in fact depends bilinearly on h(θ) and w1).
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Assume w ≡ 0 in Ω0 ∪ Ω0
1 ∪ Ω+

1 . One can easily check that ū + εw stays non-negative with non-
negative partial derivatives for |ε| � 1. Analogously to (4.17) we compute

(4.41) D2w̄(x̄(r, θ)) :=

(
∂2w
∂x2

1

∂2w
∂x1∂x2

∂2w
∂x2∂x1

∂2w
∂x2

2

)
=
w′′
1(θ) + w1(θ)

h′ cos θ + r

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)
.

Since D2u and D2w are multiples of the same rank-one matrix (namely, projection orthogonal to the
bunch) we see det(D2ū+ εD2w) = 0 on Ω−

1 . Moreover, ū+ εw inherits a positive Laplacian (c) from
u hence remains in U for |ε| � 1.

Now compute the Euler-Lagrange equation satisfied by ū using an arbitrary perturbation w1 (and the
corresponding w0). Since ū is optimal, using the area element (4.11) and expressions for the gradient
(4.15) and Laplacian (4.17) of ū in Ω−

1 , from 0 = lim
ε→0

Φ[ū+εw]−Φ[ū]
ε and (4.37) on Ω2 we deduce

0 =

∫
Ω−

1 ∪Ω2

[(x−Dū) ·Dw − w] dx

=

∫
Ω−

1

(∆ū(x)− 3)w(x)dx+

∫
∂X∩∂Ω−

1

〈x−Dū(x), n⃗(x)〉w(x)dS(x)

=

∫ θ̄

−π
4

∫ R(θ)

0

(
m(θ) +m′′(θ)

h′(θ) cos θ + r
− 3

)
(w0(θ) + rw1(θ))(h

′(θ) cos θ + r)drdθ

+

∫ θ̄

−π
4

(m(θ) cos θ −m′(θ) sin θ − a)w0(θ)h
′(θ)dθ

=

∫ θ̄

−π
4

[α(θ)w0(θ) + β(θ)w1(θ)]dθ

where α(θ) := (m(θ) +m′′(θ)− 3h′(θ) cos θ)R(θ) − 3
2R

2(θ) + (cos θm(θ)− sin θm′(θ)− a)h′(θ)

and β(θ) := 1
2 (m(θ) +m′′(θ)− 3h′(θ) cos θ)R2(θ)−R3(θ). Once again, this integration by parts can

be justified since convexity of the Lipschitz function (4.1) imply its Hessian is a matrix-valued Radon
measure.

Note that w0(−π
4 ) = w1(−π

4 ) = 0 and w′
0(θ) = h′(θ)(sin θw1(θ) + cos θw′

1(θ)). Thus,

0 =

∫ θ̄

−π
4

α(θ)w0(θ) + β(θ)w1(θ)dθ

=

∫ θ̄

−π
4

α(θ)

∫ θ

−π
4

h′(ϑ)(sinϑw1(ϑ) + cosϑw′
1(ϑ))dϑ+ β(θ)w1(θ)dθ

=

∫ θ̄

−π
4

{
α(θ)

[∫ θ

−π
4

(
2h′(ϑ) sinϑ− h′′(ϑ) cosϑ

)
w1(ϑ)dϑ

]
+ α(θ)h′(θ) cos θw1(θ) + β(θ)w1(θ)

}
dθ

=

∫ θ̄

−π
4

{(
2h′(θ) sin θ − h′′(θ) cos θ

)
w1(θ)

[∫ θ̄

θ
α(ϑ)dϑ

]
+ α(θ)h′(θ) cos θw1(θ) + β(θ)w1(θ)

}
dθ

=

∫ θ̄

−π
4

{(
2h′(θ) sin θ − h′′(θ) cos θ

) [∫ θ̄

θ
α(ϑ)dϑ

]
+ α(θ)h′(θ) cos θ + β(θ)

}
w1(θ)dθ.

(4.42)

The above equality holds for any smooth w1 on [−π
4 , θ̄] such that w1(−π

4 ) = 0. This implies(
2h′(θ) sin θ − h′′(θ) cos θ

) ∫ θ̄

θ
α(ϑ)dϑ+ α(θ)h′(θ) cos θ + β(θ) = 0 on (−π

4
, θ̄). �

Proposition 4.7 (Inner perturbations on upper bunching region). Let ū be the maximizer of (4.3). Under
ansatz (a)-(c) with α and β from (4.39), ū satisfies

α(θ) = 0 on
(
−π
4
, θ̄
)
.(4.43)
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Proof of Proposition 4.7. Let hε(θ) := h(θ) + εh̃(θ) where h̃ : [−π
4 , θ̄] → R such that h̃(−π

4 ) =

h̃(θ̄) = 0 and (hε)′(θ) > 0 for any θ ∈ [−π
4 , θ̄].

Consider perturbations ūε that are affine on the segments of perturbed foliations with coordinates
x̄ε(r, θ) := (a, hε(θ)) + r(cos θ, sin θ) such that˜̄uε(r, θ) := ūε(x̄ε(r, θ)) := bε(θ) + rm(θ),

where bε is determined by m and hε as in (4.16):

(bε)′(θ) = (hε)′(θ)[m(θ) sin θ +m′(θ) cos θ]

with bε(−π
4 ) = b(−π

4 ). Moreover, as in (4.13)–(4.15) we have

m(θ) = cos θ
∂ūε

∂x1
(x̄ε(r, θ)) + sin θ

∂ūε

∂x2
(x̄ε(r, θ)),

m′(θ) = − sin θ
∂ūε

∂x1
(x̄ε(r, θ)) + cos θ

∂ūε

∂x2
(x̄ε(r, θ)),

∂ūε

∂x1
(x̄ε(r, θ)) = cos θm(θ)− sin θm′(θ) =

∂ū

∂x1
(x̄(r, θ)),

∂ūε

∂x2
(x̄ε(r, θ)) = sin θm(θ) + cos θm′(θ) =

∂ū

∂x2
(x̄(r, θ)).

In particular,
(
∂ūε

∂x1
, ∂ū

ε

∂x2

)
(x̄ε(·, θ)) is constant for each θ, i.e., all the types of consumers on this line

segment x̄ε(·, θ) would prefer the same product Dūε ◦ x̄ε(·, θ) over all the other products.
Noting that (ūε, Dūε) = (ū,Dū) on ∂Ω−

1 ∩ ∂Ω0
1, ∂ū

∂x1
= ∂ū

∂x2
at (a+x̃2

2 , a+x̃2
2 ), and Dūε = Dū at

(a, x̄2) = x̄(0, θ̄) = x̄ε(0, θ̄), we extend ūε to X such that
1. ūε ≡ ū on Ω0 ∪ Ω0

1;
2. ūε on Ω±

1 is symmetric along diagonal;
3. ūε convex on Ω2 with ∂ūε

∂xi
|∂Ω2∩{xi=a}= a for1 i = 1, 2 and

∫
Ω2

|D [ūε(x)− ū(x)] |2dx = o(ε).

From the equation Dūε ◦ x̄ε(r, θ) = Dū ◦ x̄(r, θ), we know that Dūε inherits the correct sign from Dū.
Since ūε = ū > 0 on ∂Ω0

1 ∩ ∂Ω
−
1 , the fundamental theorem of calculus yields ūε ≥ 0 on Ω−

1 . Taking
additional derivatives ofDūε yieldsD2ūε = r+h′(θ) cos θ

r+(hε)′(θ) cos θD
2ū, so ūε inherits convexity from ū on Ω−

1 .

By symmetry, ūε, Dūε, and D2ūε also have the correct signs on Ω+
1 . Since ∂ūε

∂x1
|∂Ω2∩(∂Ω1∪{x1=a})≥ 0,

the convexity of ūε on Ω2 implies ∂ūε

∂x1
≥ 0 on Ω2. Similarly, ∂ūε

∂x2
≥ 0 holds on Ω2. In addition,Dūε ≥ 0

implies ūε ≥ 0 on Ω2 since ūε ≥ 0 on ∂Ω1 ∩ ∂Ω2. Thus, ūε remains in U for |ε| � 1.
Now, let’s compute the Euler-Lagrange equation satisfied by ū using perturbations ūε.

Φ[ūε]− Φ[ū]

=

∫
Ω±

1 ∪Ω2

(
x ·D (ūε − ū)− (ūε − ū)− 〈Dūε −Dū,Dū〉 − 1

2
|Dūε −Dū|2

)
dx

=

∫
Ω±

1 ∪Ω2

(ūε − ū) (∆ū− 3)dx+

∫
((∂Ω±

1 ∪Ω2)∩∂X)∪(∂Ω±
1 ∩∂Ω0

1)
(ūε − ū) 〈x−Dū(x), n⃗(x)〉dS(x)

−
∫
Ω±

1 ∪Ω2

1

2
|Dūε −Dū|2dx

=2

∫
Ω−

1

(ūε − ū) (∆ū− 3)dx+ 2

∫
∂Ω−

1 ∩∂X
(ūε − ū) 〈x−Dū(x), n⃗(x)〉dS(x)

− 1

2

∫
Ω±

1 ∪Ω2

|Dūε −Dū|2dx.

1From Lemma 4.5, we know ū satisfies ∂ū
∂xi

|∂Ω2∩{xi=a}= a for i = 1, 2.
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For any θ ∈ [−π
4 , θ̄] and r ∈ [0, R(θ)], define rε(r, θ) ∈ [0,∞) and ϕε(r, θ) ∈ [−π

4 , θ̄] such that
x̄ε(rε(r, θ), ϕε(r, θ)) := x̄(r, θ). Note that rε and ϕε are well defined since (hε)′ > 0.

From the definition of rε, ϕε and hε,{
rε(r, θ) cosϕε(r, θ) = r cos θ;

hε(ϕε(r, θ)) + rε(r, θ) sinϕε(r, θ) = h(θ) + r sin θ

while for |ε| � 1: rε(r, θ) = r − ε rh̃(θ) sin θ
h′(θ) cos θ+r + o(ε),

ϕε(r, θ) = θ − ε h̃(θ) cos θ
h′(θ) cos θ+r + o(ε).

Taylor expanding yields

ūε(x̄(r, θ))− ū(x̄(r, θ))

=ūε(x̄ε(rε(r, θ), ϕε(r, θ)))− ū(x̄(r, θ))

=bε(ϕε(r, θ))− b(θ) + rε(r, θ)m(ϕε(r, θ))− rm(θ)

=bε(θ)− b(θ)− ε
h̃(θ)

h′(θ) cos θ + r

(
(bε)′(θ) cos θ +m′(θ)r cos θ +m(θ)r sin θ

)
+ o(ε)

=

∫ θ

−π
4

(bε)′(ϑ)− (b)′(ϑ)dϑ− ε
h̃(θ)

h′(θ)
(b)′(θ) + o(ε)

=ε

∫ θ

−π
4

h̃
′
(ϑ)[m(ϑ) sinϑ+m′(ϑ) cosϑ]dϑ− ε

h̃(θ)

h′(θ)
(b)′(θ) + o(ε).

For every θ ∈ [−π
4 , θ̄], denote 20(θ) := m(θ)+m′′(θ)−3h′(θ) cos θ, 21(θ) :=

∫ θ
−π

4
h̃
′
(ϑ)[sinϑm(ϑ)+

cosϑm′(ϑ)]dϑ, and 22(θ) := cos θm(θ)− sin θm′(θ)− a. Therefore,∫
Ω−

1

(ūε − ū) (∆ū− 3)dx

=

∫ θ̄

−π
4

∫ R(θ)

0
(ūε(x̄(r, θ))− ū(x̄(r, θ)))

(
m(θ) +m′′(θ)

h′(θ) cos θ + r
− 3

)
(h′(θ) cos θ + r)drdθ

=

∫ θ̄

−π
4

∫ R(θ)

0

(
ε21(θ)− ε

h̃(θ)

h′(θ)
(b)′(θ) + o(ε)

)
(20(θ)− 3r) drdθ

=ε

∫ θ̄

−π
4

[
21(θ)−

h̃(θ)(b)′(θ)

h′(θ)

](
20(θ)R(θ)−

3

2
R2(θ)

)
dθ + o(ε),

and ∫
∂Ω−

1 ∩∂X
(ūε − ū) 〈x−Dū(x), n⃗(x)〉dS(x)

=

∫ θ̄

−π
4

(ūε(x̄(0, θ))− ū(x̄(0, θ)))

(
∂ū

∂x1
(x̄(0, θ))− a

)
h′(θ)dθ

=

∫ θ̄

−π
4

(
ε21(θ)− ε

h̃(θ)

h′(θ)
(b)′(θ) + o(ε)

)(
m(θ) cos θ −m′(θ) sin θ − a

)
h′(θ)dθ

=ε

∫ θ̄

−π
4

(
21(θ)h

′(θ)− h̃(θ)(b)′(θ)
)
22(θ)dθ + o(ε).
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Note that
∫
Ω±

1 ∪Ω2
|D (ūε(x)− ū(x)) |2dx = o(ε). Since ū is optimal, 0 = lim

ε→0

Φ[ūε]−Φ[ū]
ε implies

that

0 =

∫ θ̄

−π
4

[
21(θ)−

h̃(θ)(b)′(θ)

h′(θ)

](
20(θ)R(θ)−

3

2
R2(θ)

)
dθ

+

∫ θ̄

−π
4

(
21(θ)h

′(θ)− h̃(θ)(b)′(θ)
)
22(θ)dθ

=

∫ θ̄

−π
4

{
21(θ)

(
20(θ)R(θ)−

3R2(θ)

2
+22(θ)h

′(θ)

)
− h̃(θ)b′(θ)

h′(θ)

(
20(θ)R(θ)−

3R2(θ)

2
+22(θ)h

′(θ)

)}
dθ

holds for any h̃ : [−π
4 , θ̄] → R such that h̃(−π

4 ) = h̃(θ̄) = 0.
Recall that 21(θ) =

∫ θ
−π

4
h̃
′
(ϑ)[sinϑm(ϑ)+cosϑm′(ϑ)]dϑ=

∫ θ
−π

4
h̃
′
(ϑ) b

′(ϑ)
h′(ϑ)dϑ andα(θ) = 20(θ)R(θ)−

3R2(θ)
2 +22(θ)h

′(θ). Therefore, Fubini’s theorem tells

0 = −
∫ θ̄

−π
4

[∫ θ̄

−π
4

h̃(θ)b′(θ)

h′(θ)
−
∫ θ

−π
4

h̃
′
(ϑ)

b′(ϑ)

h′(ϑ)
dϑ

]
α(θ)dθ

=

∫ θ̄

−π
4

h̃
′
(θ)

b′(θ)

h′(θ)

∫ θ̄

θ
α(ϑ)dϑdθ −

∫ θ̄

−π
4

h̃(θ)b′(θ)

h′(θ)
α(θ)dθ

= −
∫ θ̄

−π
4

h̃(θ)

{
h′(θ)b′′(θ)− b′(θ)h′′(θ)

(h′(θ))2

∫ θ̄

θ
α(ϑ)dϑ− b′(θ)

h′(θ)
α(θ)

}
dθ −

∫ θ̄

−π
4

h̃(θ)b′(θ)

h′(θ)
α(θ)dθ

= −
∫ θ̄

−π
4

h̃(θ)

{
cos θ[m(θ) +m′′(θ)]

∫ θ̄

θ
α(ϑ)dϑ

}
dθ

holds for any h̃ ∈ C2((−π
4 , θ̄)) of compact support, due to the the locally uniform bound (b) h′(θ) > 0.

Then the fundamental lemma of the calculus of variations tells

cos θ[m(θ) +m′′(θ)]

∫ θ̄

θ
α(ϑ)dϑ = 0, ∀θ ∈

(
−π
4
, θ̄
)
.(4.44)

Recalling (4.17), the locally uniform rank 1 property (c) ofD2ū on Ω−
1 implies thatm(θ)+m′′(θ) 6= 0

for all θ ∈
(
−π

4 , θ̄
)
. Since cos θ > 0 for all θ ∈

(
−π

4 , θ̄
)
, one has∫ θ̄

θ
α(ϑ)dϑ = 0, ∀θ ∈

(
−π
4
, θ̄
)
.

Thus,

α(θ) = 0, ∀θ ∈
(
−π
4
, θ̄
)
.

�

Combining the conclusions from Proposition 4.6 and Proposition 4.7, one has α(θ) = 0 and β(θ) = 0
for any θ ∈

(
−π

4 , θ̄
)
. That is to say, the Euler-Lagrange equations on Ω−

1 imply{
m(θ) +m′′(θ)− 3h′(θ) cos θ = 2R(θ),

(m(θ) cos θ −m′(θ) sin θ − a)h′(θ) + 1
2R

2(θ) = 0,
on θ ∈

(
−π
4
, θ̄
)
,(4.45)

or equivalently (4.22)–(4.23).
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Lemma 4.8 (Size of exclusion region). If Ω0 is connected and Ω0 ∩ cl(Ω2) = ∅, then Ω0 is a right
triangle occupying the left-bottom corner of X and the hypotenuse of this triangle is located on the line
{(x1, x2) ∈ X : x1 + x2 = a+ x2} with x2 =

a+
√
4a2+6
3 . Moreover, ū ≡ 0 on Ω0.

Proof of Lemma 4.8. Based on the results provided in Lemma 4.3, we only need to show that Ω0 is a
right triangle with x2 =

a+
√
4a2+6
3 .

(i). Assume Ω0 is a right triangle. Integrating the ODEs and PDEs obtained from perturbation argu-
ments on X \ Ω0 as shown in Lemma 4.4, 4.5, and Proposition 4.6, one has

0 =

∫
X\Ω0

(∆ū− 3)dx+

∫
∂X\∂Ω0

〈x−Dū(x), n⃗(x)〉dS(x).

On the one hand, for any smooth function h on X , one has

Φ[ū+ h]− Φ[ū] =

∫
X

(
Dh · x− h− 1

2
|Dh|2 −Dū ·Dh

)
dx

=

∫
X

(
h · (∆ū− 3)− 1

2
|Dh|2

)
dx+

∫
∂X

h〈x−Dū, n⃗(x)〉dS(x).

Taking h ≡ 1, it follows that

Φ[ū+ 1]− Φ[ū] =

∫
X
(∆ū− 3)dx+

∫
∂X

〈x−Dū, n⃗(x)〉dS(x)

=

∫
Ω0

(∆ū− 3)dx+

∫
∂X∩∂Ω0

〈x−Dū, n⃗(x)〉dS(x)

=

∫
Ω0

−3dx+

∫
∂X∩∂Ω0

〈x, n⃗(x)〉dS(x)

=− 3|Ω0| − a|∂X ∩ ∂Ω0|

=− 3

2
(x2 − a)2 − 2a(x2 − a).

On the other hand, Φ[ū+ 1]− Φ[ū] =
∫
X −1dx = −1. The resulting quadratic equation

0 = 3(x− a)2 + 4a(x− a)− 2

implies x2 =
a+

√
4a2+6
3 .

(ii). Assume Ω0 is an irregular pentagon described in Figure 5b with one side located on the line
{(x1, x2) ∈ X : x1+x2 = a+1+x1}. Following the same calculations as above, one will get x1 = a+1
and thus Ω0 = X . This implies that the optimal solution ū ≡ 0 on X . However, one can check that
Φ[ū] = 0 is not optimal because u(x1, x2) := 2

√
2a+0.01
9 (x1 + x2)

3
2 ∈ U and Φ[u] > 0 = Φ[ū].

(iii). Therefore, Ω0 is a right triangle described in Figure 5a with x2 =
a+

√
4a2+6
3 . �

Plugging the value of x2 into the explicit formula of ū on Ω0
1, one obtains the following corollary.

Corollary 4.9. In Lemma 4.4, C0 = −2a2+3+2a
√
4a2+6

12 + 1
2 ln

(
−2a+

√
4a2+6

3

)
and C1 =

1
2 .

5. CONCLUSION AND FUTURE WORK

This paper establishes a strong duality with attainment for the monopolist problem with bilinear
preferences. We apply this duality theory to analyze the Rochet-Choné bidimensional square model
with quadratic costs. This leads to a free boundary problem, that requires identifying the unique domain
boundary for which the solution of a new ODE (describing a targeted bunching region in which the
isochoice segments rotate) on one side of the boundary can be differentiably matched to the solution
of a Poisson Neumann problem that characterizes the optimal payoff on the other side of the boundary.
Under an ansatz more general than Rochet and Choné’s, we show that solving this free boundary problem
is both necessary and sufficient for optimality. We show each bunch corresponds to a price gradient
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discontinuity across the boundary of the optimal product line. It remains a challenging open problem to
give a rigorous proof either that this free boundary problem admits an admissable (i.e. convex) solution,
or alternately, that the optimal payoff satisfies the hypotheses of our necessity ansatz.

We close this paper by conjecturing the existence of a convex solution to free boundary problem. This
conjecture is consistent with all theoretical and numerical evidence concerning the problem that we are
aware of. We hope to tackle this conjecture in the future, perhaps using a fixed-point or dynamical flow
argument, or a variational principle.

APPENDIX A. ON CONVEX RULED SURFACES WITHOUT SMOOTHNESS. BY CALE RANKIN

In this appendix we confirm that the graph of the optimizing indirect utility is a convex ruled surface in
the region where rank(D2u) = 0 holds. For u ∈ C2(X) this is a classical fact, known to geometers such
as Monge since the eighteenth century: one obtains the rulings (segments) along which u is affine by
integrating the continuous vector field given by zero-eigenvalue eigenvectors of the Hessian D2u. The
point of the present appendix is to extend this result to the merelyC1,1

loc regularity (4.1) guaranteed for the
optimal indirect utility ū by the work of Caffarelli and Lions (2006+). For this we recall the definition
of the Monge-Ampère measure for C1 convex functions. The Monge-Ampère measure, denoted µu, of
such a function is the measure defined for E ⊂ Rn by

µu(E) = vol[Du(E)].

For a proof that this quantity is a measure and other basic properties see the book of Figalli (2017). The
Monge-Ampère measure extends the measure detD2u dx to functions which are not twice differentiable
and we employ it in conjunction with the Aleksandrov maximum principle, stated here as in Theorem
2.8 of Figalli (2017).

Theorem A.1 (The Monge-Ampère measure controls deviation from linearity). Let X ⊂ Rn be an
arbitrary convex set and u : X → R a convex function. Assume the restriction of u to ∂X is affine, that
is there is l(x) = p · x + a such that u ≡ l on ∂X . Then there is a constant C depending only on the
dimension such that the following estimate holds for all x ∈ X

|u(x)− l(x)|n ≤ Cdiam(X)n−1dist(x, ∂X)µu(X).

This theorem simplifies considerably when u is C1,1
loc . Indeed, the Lipschitz continuity of the first

derivatives implies almost everywhere second differentiability. Subsequently the Monge-Ampère mea-
sure is absolutely continuous with respect to Lebesgue and given by µu = detD2u(x) dx where we
may set D2u(x) = 0 at points where u is not twice differentiable (Trudinger and Wang, 2008, Lemma
2.3). Now we extend the classical result on ruled surfaces as follows.

Lemma A.2 (Ruled surface). Let u ∈ C1,1
loc (Ω) be the restriction of a convex function u : R2 →

R ∪ {+∞} which, throughout a bounded open set Ω ⊂ R2, satisfies detD2u = 0 < ∆u at points of
second differentiability. If y ∈ Du(Ω), each connected component of Du−1(y) ∩ Ω is a line segment
with endpoints on ∂Ω.

Proof. Take y0 = Du(x0) for some x0 ∈ Ω. Let l denote the corresponding support l(x) := u(x0) +
y0 · (x− x0). We claim the intersection of the convex set S0 := {u ≡ l} = Du−1(y0) with Ω consists
of line segments with endpoints on ∂Ω.

First note x0 ∈ S0∩Ω. Now ∆u > 0 implies u is not affine on any open set and thus S0 is at most one
dimensional. Next, detD2u = 0 a.e. on Ω combines with u ∈ C1,1

loc (Ω) to imply the Monge-Ampère
measure of u vanishes on Ω, that is µu(Ω) = 0. For a contradiction suppose a connected component of
S0 ∩ Ω does not intersect the boundary. To avoid a contradiction, the convex set

Sϵ := {x ∈ Rn : u(x) ≤ l(x) + ϵ}

which contains x0 ∈ S0∩Ω must be strictly contained in Ω for ϵ > 0 sufficiently small. The Aleksandrov
maximum principle implies the contradiction via Theorem A.1.

Thus Du−1(y) is a line segment with an endpoint on ∂Ω. To see both endpoints lie on ∂Ω we again
suppose otherwise. Without loss of generality x0 = 0 and Du−1(y) = {te1; a ≤ t ≤ b} with b > 0 and
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be1 ∈ int(Ω) . Then, by tilting the support, we see for ϵ > 0 sufficiently small the convex set

S′
ϵ = {x ∈ Rn : u(x) ≤ l(x) + ϵx1},

again contains x0 and is compactly contained in Ω. This yields the same contradiction to the Aleksan-
drov maximum principle as above. Thus Du−1(y) is a line segment with both endpoints on ∂Ω. �
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