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Nowadays in modern medicine, computer modeling has already become one of key methods

toward the discovery of new pharmaceuticals. And virtual screening is a necessary process

for  this discovery. In the procedure of virtual screening, shape matching is the first step

to  select ligands for binding protein. In the era of HTS (high throughput screening), a fast

algorithm with good result is in demand. Many methods have been discovered to fulfill the

requirement. Our method, called “Circular Cone”, by finding principal axis, gives another

way toward this problem. We  use modified PCA (principal component analysis) to get the

principal axis, around which the rotation is like whirling a cone. By using this method, the
Pocket

Ligand

New pharmaceuticals

Virtual screen

Circular Cone

speed of giving score to a pocket and a ligand is very fast, while the accuracy is ordinary. So,

the  good speed and the general accuracy of our method present a good choice for HTS.

©  2012 Elsevier Ireland Ltd. All rights reserved.

Two basic steps of shape matching are the representation
1. Introduction

It is well-known that virus resistance to first-line antibiotics
poses a serious threat to public health. For this reason many
pharmaceutical and biotechnology institutes are aggressively
pursuing novel ways to kill or inhibit viruses. Toward this end,
drug design is to develop a small molecular antibiotic against
resistant strains. Recent estimates suggest that it takes up to
13.5 years and 1.8 billion U.S. dollars to bring a new drug to the
market [1].  The involvement of genomics [2],  proteomics [3],

bioinformatics [4] and efficient technologies like combinato-
rial chemistry [5],  high throughput screening (HTS) [6],  virtual
screening, ADMET screening [7] and structure-based [8] drug
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design serves to expedite as well as economize the modern
day drug discovery process. In the past few decades, as drug
design is becoming increasingly more  significant, its first and
fundamental step, shape matching, also called shape comple-
mentarity, is also researched hotly as a matter of course. Shape
matching is essential in predicting which molecules can bind
to a given binding site of a protein with known 3D structure,
which is important to decipher the protein function and is
useful in drug design.
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of the system and the calculation of their similarity. To the
first step, the choice of descriptor is often domain-specific
and could vary largely from one application to another, facing
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These points, which represent the pocket and ligand, are of
c o m p u t e r m e t h o d s a n d p r o g r a m s 

he dilemma of either being too coarse (ignoring informa-
ion) or too complex (redundant and unstable). As the problem
f matching rigid closed shapes is generalized into partial
r articulated shapes, developing a shape representation for
atching and recognition becomes significant. Usually shapes

ave been presented as curves [9],  medial axes [10], shock
tructures [11], sampled points [12] and so on. (i) For the
epresentation about curves [13], one characteristic of most
xisting curvature-measurement techniques is the assump-
ion that there is a unique curvature that can be measured
t each point. Mokhtarian and Mackworth have introduced
he curvature scale-space image  as a tool for representing
lanar curves [14]. This representation is computed by con-
olving a path-based parametric representation of the curve
ith a Gaussian function with varying standard deviation. (ii)

or the axis-based representations, the idea of decomposing
 shape into primitives and building up its description in a
rame that expresses the links between these primitives was
rst made explicit by Marr and Nishihara [15] and has been
ne of most promising guidelines for recognition. Shaked and
ruckstein had used “pruning medial axes” to define the rep-
esentation of shape matching [16]. (iii) For the shock-based
epresentation, it is a representation derived from viewing the

edial axis as singularities formed during propagation from
oundaries, for example, Blum’s grassfire is the shock tree
r shock graph [17]. (iv) As for points-based representation,
atching is typically done using an assignment algorithm [18]
hen a shape is represented using a point set [19]. These
ethods have the advantages of not requiring an ordered

oundary point. But if the similarity of two points is based
n a local measure, the matching process does not necessar-

ly capture the coherence of shapes in that the relationship
mong portions of shape may not be fully captured in the
atch.
With regard to the second step, the calculation of their

imilarity, current shape matching algorithms can be divided
nto two categories: global and local approaches. Global meth-
ds compared the shape of the input objects by defining a
lobal matching cost and optimization algorithm for find-
ng the lowest cost. One of the most popular methods for
lobal shape matching is the shape context proposed by
elongie et al. [12]. Their algorithm uses randomly sampled
oints as shape representation and is based on a robust
hape descriptor – the shape context – which allows formu-
ating the matching step as a correspondence problem. The
hape context is the basis for different extensions consider-
ng geodesic distances as proposed by Ling and Jacobs [20]
r the point ordering as shown by Scott and Nowak [21].
owever while such global matching methods work well on
ost of the standard shape retrieval datasets, it is difficult to

andle part deformations, strong articulation or occlusions,
or instance, occlusions may lead to matching errors for the
ontext based COPAP framework [21]. These problems are han-
led well by purely local matching methods as, e.g. proposed
y Chen et al. [22], which accurately measure local similar-
ty, but in contrast fail to provide a strong global description
or robust shape alignment. In addition, local matching

s incoherently more  complex than global matching, since
lobal invariants could save a lot of computations for global
atching.
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In the pharmaceutical development process there are
plenty of data to process, though slow methods would make
this process excessively long. Thus, speed is a significant fac-
tor for shape matching. Many mainstream methods try to
improve the speed of matching. In this article, our main con-
tribution is to improve the speed with quality comparable to
current methods. We  choose the classical method distributed
molecular surface (DMS) [23] to signify the surface. Partic-
ularly, we only present the pockets of the protein because
ligands only combine with the pockets. Therefore we  could
use fewer points on the surface, which will reduce the com-
plexity of our later calculation. In addition, these critical points
will be used in modified principal component analysis (modi-
fied PCA) to find principal axes, which enhances the speed of
our method. Based on the representation we  have chosen, we
calculate the complementarity by local shape matching, but it
is not a complete local matching method. Firstly we  find two
principal axes, and then we naturally put two axes together to
compare, with some rotations to figure out whether the two
shapes match well. Before comparison, some points of these
two shapes should be selected, considering the number of all
the points is considerable, which gives inconvenience to the
calculation and slows down the speed. What’s more,  not all of
these points are useful. So we select some points according to
the method given later. And the method of comparison is also
given in Section 2. Here we choose some interesting sampled
points (called right points)  of the surface, and compare the con-
tribution of the distances between right points and the special
point (called end point), the intersection of principal axes and
the surface. Finally, the most significant is that, our method
is proven to have greatly enhanced the speed and insured the
accuracy at the same time by the convincing results of enough
tests.

2. Method

2.1.  Dataset

We  use the Kahraman dataset, proposed by [24], which con-
sists of 100 protein crystal structures in complex with one of
ten ligands (AMP, ATP, PO4, GLC, FAD, HEM, FMN,  EST, AND,
NAD). The result will be discussed after Section 2.

We get the representation of the surfaces, and then calcu-
late their principal axes and superimpose the principal axes
together. Secondly, we analyze the similarity of the two sur-
faces to estimate whether the protein and the small molecule
can bind to each other and give scores. The whole process is
shown in Fig. 1. The details are shown as follows.

2.2.  Get  surface  of  pocket  and  ligand

Here we use DMS  to get the surface of pocket and ligand. DMS
is an open source program for calculating the molecular sur-
face, which is defined by Richards [25]. The data we  get are the
coordinates of points representing the surfaces.
great importance in that the following processes are all based
on these data. Fig. 2(a) shows these points representing the
surface of a ligand.

dx.doi.org/10.1016/j.cmpb.2012.02.011
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Get the  surface  of  pocket  and  

ligand (DMS)  

Find the  principal axis  

Find th e en d poin t an d th e righ t 

points 

Calculate the  distances  between  

the end  point  and  the right  points  

Assign scores according  to  the  

similarit y of  the  distances  

Fig. 1 – The process of the “Circular Cone” method.

Fig. 2 – Results of each step. (a) The points given by DMS,
representing the surface of a ligand. (b) The principal axis
of a ligand given by modified PCA. (c) The rays emitted from
the end point to get the right points. , show the selected
points (right points)  in the interlayer (sectional drawing).
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 168–175

2.3. Find  the  principal  axis

With the points representing the surfaces of the pocket and
the ligand, we  would like to estimate the similarity between
them. Their principal axes will coincide with each other if they
have a high similarity. At first, we find their principal axes by
principal component analysis (PCA) [26]. It is now mostly used
as a tool in exploratory data analysis and for making predictive
models.

However, the transformations given by PCA include an act
of normalizing the data. After these transformations, the scale
of the surface has been changed, which would change the
shape of the original model. We  give back the normalization
after the principal axes have been found by taking the inverse
matrix of each transformation. Fig. 2(b) shows the principal
axis of a ligand given by modified PCA.

2.4.  Find  the  end  point  and  right  points

After we  get the principal axis, we select important points by
the following steps. We  take one of each principal axis, let the
end point be the origin, send out two rays, respectively, along
30◦ and 35◦ with the axis, then make a rotation by 360◦, thus we
have two circular conical surfaces and both of them have inter-
sections with the surface of the pocket, we take the interlayer
between them, then we get the right points from the interlayer
and analyze them. Some results are shown in Fig. 2(c). Then,
we change 30 to 45◦ and 60◦ to ensure the accuracy rating of
the result of our arithmetic. Considering that the angle we
send out cannot be too small or too large, we  choose the angle
between 30◦ and 60◦, after repeated experiments, we  choose
30◦, 45◦ and 60◦ to describe our model.

2.5.  Calculate  the  distances  between  the  end  point  and
the right  points

For the pocket, we divide the conical interlayer equally into
36 parts, 10◦ each. For each part, we calculate the arithmetic
mean value of Euclidean distances from the right points of each
part to the end point, and call the value pvalue.  And the same
goes for the ligand. Then we get the two sets of pvalues, each
has 108 pvalues (each 36 pvalues of 30◦, 45◦ and 60◦ conical
interlayers). If the pocket and the ligand have a high similar-
ity, the distances from the right points and the end point of the
pocket and the ligand will also have a high similarity. So, we
can use the similarity of distances to describe the similarity
of pocket and ligand.

2.6.  Assign  scores  according  to  the  similarity  of  the
distances

In this step, we  compare the two sets of data representing the
distances that we get from the former step. We  calculate root-
mean-square deviation (RMSD) [27] of the two  sets with the

rotation to get 36 values. Then we take the minimum values to
be the score of the pocket and the ligand, which represents the
similarity of the two  geometric surfaces. Note that the lower
score represents the higher similarity.

dx.doi.org/10.1016/j.cmpb.2012.02.011
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Fig. 3 – The structure of 1ej2 NAD with some results of PCA and modified PCA. (a) The structure of the ligand of 1ej2 NAD.
(b) The structure of the pocket of 1ej2 NAD. (c) The principal axis of the ligand given by modified PCA. (d) The principal axis
of the pocket given by modified PCA. (e) The combination of the ligand (c) and pocket (d) while the axes coincide. (f) The
principal axis of the ligand given by PCA. (g) The principal axis of the pocket given by PCA. (h) The combination of the ligand
(f) and pocket (g) while the axes coincide. These figures were  generated by PyMOL [29].
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.  Results

fter doing a variety of experiments on the Kahraman dataset,
e  acquire a sequence of results to analyze advantages and
isadvantages of our method. They indicate the accuracy,
daptability and speed of our approach, as well as shortcom-
ngs. And we  draw some case analyses and comparison as
ollows to illustrate the results.

.1.  Case  analysis

e  choose 1ej2 NAD as the first example. 1ej2 NAD is the
rystal structure of methanobacterium thermoautotroph-
cum nicotinamide mononucleotide adenylyltransferase with
ound NAD+ [28]. The ligand and pocket of it is shown in
ig. 3(a) and (b), respectively.

Fig. 3(c) shows the principal axis of the ligand, while Fig. 3(d)
hows the principal axis of the pocket, and they both indicate
hat we  have found the principal axes precisely. Fig. 3(e) is the

atching figure of them, in which their principal axes coincide
ith each other. Apparently, they match pretty well.

On the other hand, Fig. 3(f) and (g), respectively, shows
ach principal axis of the ligand and the pocket, they are both
istortedly represented by PCA. Fig. 3(h) shows the matching
gure of them like Fig. 3(e) does, but in Fig. 3(h), there are some

toms of the ligand passing through the interior part of the
ocket, which contradicts the facts. Thus we discover that it

s not proper for PCA to present the axes of these structures
ecause they change the shape of the original structures. This
leads to a failing matching when their principal axes are over-
lapped. However, our modified PCA overcomes this deficiency,
which basically ensures the accuracy of our later calculation.

Generally, our modified PCA has quite a wide adaptability,
including some semicircular ligands which were considered
inadaptable for PCA. For instance, the ligand of 1s7g NAD is
semicircular but it matches well with the pocket by using mod-
ified PCA. 1s7g NAD is the structural basis for the mechanism
and regulation of Sir2 enzymes [30]. The results are shown in
Fig. 4.

There are also some cases which match well but have lower
scores. For example, the ligand PO4, shown in Fig. 5, has only
five atoms, whose surface has large differences with the pock-
ets. As a result, it has low scores in most situations. Another
type of these cases happens mainly because they match well
in local but differ much in a global situation. Therefore, it is
not accurate to find the principal axes to compare their com-
plementarity, and that is what we should take into account in
future research.

3.2.  Comparison  with  another  method

We  compare our method with ShaEP [31] on the Kahraman
dataset. ShaEP, a method for rigid-body superimposition and
similarity evaluation of ligand-sized molecules, is capable of
identifying a substantial number of active compounds in a

database of druglike molecules [31]. Additionally, ShaEP over-
lays drug-sized molecules on a subsecond timescale, allowing
for the screening of large virtual libraries [31]. These two
advantages of ShaEP are also our goals. Thus we  adopt this

dx.doi.org/10.1016/j.cmpb.2012.02.011
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Fig. 4 – The structure of 1s7g NAD with some results of modified PCA. (a) The structure of the ligand of 1s7g NAD. (b) The
structure of the pocket of 1s7g NAD. (c) The ligand of 1s7g NAD with the principal axis in black. (d) The pocket of 1s7g NAD
with the principal axis in black. (e) The combination of the pocket (c) and the ligand (d) of 1s7g NAD while their principal

axes coincide. These figures were  generated by PyMOL.

comparison. The performance of both methods is evaluated
on the basis of AUC score and speed, which is measured by
the average processing time per structure comparison.

AUC score is computed as follows. Consider a set of pock-
ets (P1, . . .,  PN) and a similarity measure S. To each pocket Pi,
we rank all the pockets according to their similarities to Pi

with descending order, using method S. Then we  draw the ROC
curve for this pocket, with points on XY-plane whose X-axes
are the number of pockets binding the different ligand among
the top n pockets and Y-axes are the number of pockets bind-
ing the same ligand among the top n pockets, when n varies
from 0 to N. We  align the points next to each other to make
up the ROC curve. Divide the area under the ROC curve by the
product of the number of pockets binding the different ligand
among these N pockets and the number of pockets binding the
same one among these N pockets, and we get the AUC score of
this pocket. Thus AUC score ranges from 0 to 1.0, and a better
method would have a higher AUC score. For example, to each
pocket Pi, an “ideal” method will rank all pockets binding the
same ligand as Pi on the top of the list, leading to an AUC score
equal to 1.0. As a whole, the quality of method S is measured
by the AUC scores of these pockets.
In the Kahraman database, there are 100 pockets in total.
Each pocket is proposed to compare with all the 100 pockets in
the dataset. Then 100 scores are obtained, which present the

Fig. 5 – The structure of 1a6q PO4. (a) The structure of the ligand
The binding structure of the ligand (a) and the pocket (b). These 
similarity of pockets. By these 100 scores, we get the AUC score
of each complex, which presents the accuracy of our method
on this particular pocket. On the Kahraman dataset, we  get 100
ROC curves and 100 AUC scores. We also get 100 ROC curves
and 100 AUC scores of ShaEP. Fig. 6 shows the ROC curves of
FAD. Tables 1–3 show the comparison between ShaEP and our
method Circular Cone with AUC score.

Meanwhile, we run the program of both methods on the
same computer (a 2.00 GHz Pentium(R) Dual-Core CPU, T4200,
RAM 2.00 GB, running Windows 7), and calculate the aver-
age processing time per structure of both. Table 4 shows the
comparison between ShaEP and Circular Cone with average pro-
cessing time per structure.

In Table 1, AUC scores in bold present the portion on which
our method is better than ShaEP, in italics present the portion
on which ShaEP is better than ours, the others present the
portion on which the two methods behave almost the same
(the difference in AUC scores is less than 0.05). We  could find
that Circular Cone works better than ShaEP on such ligands as
AMP,  ATP and AND, with the average AUC scores of Circular
Cone 0.10 higher than that of ShaEP, while ShaEP does better
than Circular Cone on FMN.
From Table 2, when t is equal to 0.05, in 45 cases, the AUC
scores of Circular Cone are better than those of ShaEP; and in 15
cases, the AUC scores of ShaEP are better than Circular Cone; in

 of 1a6q PO4. (b) The structure of the pocket of 1a6q PO4. (c)
figures were  generated by PyMOL.

dx.doi.org/10.1016/j.cmpb.2012.02.011
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Fig. 6 – The ROC curves of FAD (the solid line above is ROC
curve of our method Circular Cone and the other one is that
of ShaEP).

Table 1 – The comparison of two methods with AUC
score (ligands).

I II III IV V VI VII VIII

AMP 9 0.78 0.87 0.54 0.75 0.68 0.81
ATP 14 0.71 0.81 0.55 0.69 0.62 0.77
FAD 10 0.74 0.89 0.54 0.49 0.64 0.72
FMN 6 0.82 0.58 0.58 0.48 0.65 0.53
GLC 5 0.84 0.81 0.72 0.77 0.78 0.78
HEM 16 0.77 0.83 0.51 0.51 0.67 0.73
NAD 15 0.60 0.67 0.30 0.23 0.49 0.52
PO4 20 1.00 0.99 0.92 0.91 0.97 0.96
AND 2 0.77 0.92 0.61 0.90 0.69 0.91
EST 3 0.91 0.94 0.59 0.78 0.77 0.85

(I) Ligands in the Kahraman dataset. (II) The number of complexes
for each ligand. (III) The highest AUC score of ShaEP on each ligand.
(IV) The highest AUC score of Circular Cone on each ligand. (V) The
lowest AUC score of ShaEP on each ligand. (VI) The lowest AUC score
of Circular Cone on each ligand. (VII) The average of AUC scores of
each ligand of ShaEP. (VIII) The average of AUC scores of each ligand
of Circular Cone.

Table 2 – The comparison of two methods with the
difference of AUC score (complexes).

t Diffa ≤ −t −t < Diff < t Diff ≥ t

0 37 0 63
0.01 31 8 61
0.02 28 15 57
0.03 24 22 54
0.04 20 32 48
0.05 15 40 45
0.06 13 46 41
0.07 10 53 37
0.08 7 57 36
0.09 7 60 33
0.10 6 61 33

a Diff donates the result of AUC score of Circular Cone subtracts that
of ShaEP.

Table 3 – The comparison of two methods with the
difference of AUC score (ligands).

I II Diffa ≤ −0.05 −0.05 < Diff < 0.05 Diff ≥ 0.05

AMP 9 0 3 6
ATP 14 0 1 13
FAD 10 2 1 7
FMN 6 5 1 0
GLC 5 0 5 0
HEM 16 1 5 10
NAD 15 4 5 6
PO4 20 2 18 0
AND 2 0 0 2
EST 3 1 1 1

Total 100 15 40 45

(I) Ligands in the Kahraman dataset. (II) The number of complexes
for each ligand.

a Diff donates the result of AUC score of Circular Cone subtracts that

of ShaEP.

the other 40 cases, the AUC scores of both methods are almost
the same.

From Table 3, we  could find that Circular Cone works better
than ShaEP on such ligands as AMP,  ATP and HEM, while ShaEP
does better than Circular Cone on FMN.

It could be found from Table 4 that the average processing
time per structure of ShaEP is 895.5 ± 439.5 ms  with a median
of 687.5 ms  while that of Circular Cone is 132 ± 26 ms  with a
median of 122.5 ms.  Moreover, most of the average processing
times per structure of Circular Cone are less than fifth of that
of ShaEP, which indicates that the program of Circular Cone is
faster than that of ShaEP.

From the result above, we could find that there are indeed
some cases on which ShaEP works better than Circular Cone,
at the same time, there are more  cases on which Circular Cone
does better. Additionally, Circular Cone is faster than ShaEP.

4.  Discussion
According to the results, the AUC is ranged from 0.23 to 1.00,
when some structures have higher scores and some have

Table 4 – The comparison of two methods with average
processing time per structure.

I II III IV

AMP 9 640 123
ATP 14 735 128
FAD 10 1335 158
FMN 6 752 122
GLC 5 552 107
HEM 16 919 148
NAD 15 907 150
PO4 20 456 106
AND 2 600 113
EST 3 590 111

(I) Ligands in the Kahraman dataset. (II) The number of complexes
for each ligand. (III) The average processing time per structure of
ShaEP (ms). (IV) The average processing time per structure of Circular
Cone (ms).

dx.doi.org/10.1016/j.cmpb.2012.02.011
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lower ones. For example, according to Table 1, the structure of
PO4 obtains the highest score of both methods. PO4 only has 5
atoms, making the volume of this molecule much smaller than
that of the other structures. So it is easy for both methods to
exclude, just from their sizes, pockets combined with other
ligands, which leads to high AUC scores of both methods.

Another example comes from NAD, a structure of 44 atoms.
It could be readily considered by shape that NAD and its pocket
could be combined well to make a new complex. However,
from our test, this situation obtains a lower AUC score. Our
method works better in situations where more  parts of the
ligands are enfolded by the pockets, such as most complexes
of ATP; while in this database, most of the pockets of NAD have
big openings.

In our method, since the results of PCA depend on the scal-
ing of the variables, it could not be confirmed that the axis got
from PCA is exactly the principal axis of the original model
after the normalization. So, it is no wonder that the accuracy of
our method is not perfect. However, as we could conclude from
Tables 1–3,  in most situations, our method performs not worse
than the other one, although in few situations, our method
does not perform that well. Thus, results on this dataset show
that the accuracy of our method is comparable.

Generally the method with a higher AUC score is supposed
to have a lower speed. Compared with the ShaEP, our method
has a high speed as well as good scores. Finding principal
axis first is one factor that contributes to the high speed,
which avoids a lot of rotations. Moreover, end point acts as
another factor that contributes to the high speed, which avoids
some translations. Additionally, using fewer calculations is
also another factor.

Our method may be improved in the following ways.
First of all, there are some structures on which our method
performs worse than ShaEP. As illustrated above, our meth-
ods works better in situations in which more  parts of the
ligands are enfolded by the pockets. As to some other sit-
uations, which we  could find from Tables 1 and 3, slowing
down the speed and comparing more  carefully would be a
good choice. Secondly, flexibility, which is important to vir-
tual screening, is another factor our method has not taken
into consideration. Thirdly, scores given by our method lack
an absolute standard, without which we could not know from
the score whether a protein could match a ligand or not. At
this moment, we  could only use the scores to give a rank indi-
cating the higher rank corresponding to a higher possibility of
matching.

5.  Conclusions

Shape matching is a widely studied topic because of its prac-
tical merit in relation to drug design. In this study, we  have
achieved a new method to measure the similarity between
the proteins and the ligands. In this method, pockets and lig-
ands are represented by points on their molecular surfaces.
Then we  obtain the principal axes to achieve global matching

and reduce the degree of freedom. And we implement local
matching with rotations to ensure the accuracy of the method.
Finally, we  calculate the similarity of the proteins and the lig-
ands with a high speed. In the era of HTS, the speed is of great
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 168–175

importance. So, the high speed of Circular Cone provides a good
choice for HTS.
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