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ABSTRACT. Discretized Langevin diffusions are efficient Monte Carlo methods for sampling from
high dimensional target densities that are log-Lipschitz-smooth and (strongly) log-concave. In
particular, the Euclidean Langevin Monte Carlo sampling algorithm has received much attention
lately, leading to a detailed understanding of its non-asymptotic convergence properties and of
the role that smoothness and log-concavity play in the convergence rate. Distributions that do
not possess these regularity properties can be addressed by considering a Riemannian Langevin
diffusion with a metric capturing the local geometry of the log-density. However, the Monte Carlo
algorithms derived from discretizations of such Riemannian Langevin diffusions are notoriously
difficult to analyze. In this paper, we consider Langevin diffusions on a Hessian-type manifold
and study a discretization that is closely related to the mirror-descent scheme. We establish for the
first time a non-asymptotic upper-bound on the sampling error of the resulting Hessian Riemannian
Langevin Monte Carlo algorithm. This bound is measured according to a Wasserstein distance
induced by a Riemannian metric ground cost capturing the squared Hessian structure and closely
related to a self-concordance-like condition. The upper-bound implies, for instance, that the iterates
contract toward a Wasserstein ball around the target density whose radius is made explicit. Our
theory recovers existing Euclidean results and can cope with a wide variety of Hessian metrics
related to highly non-flat geometries.

Keywords. Riemannian Langevin Monte Carlo, Hessian manifold, sampling, contraction, Baillon-Haddad
inequality.

1. INTRODUCTION

1.1. Problem and setting. We consider the problem of sampling from a target probability distri-
bution dπ = e−f(x)dx supported on a domain X ⊂ Rp, where f is differentiable on X . We are
particularly interested in sampling algorithms that scale efficiently to high dimensions. When f is
Lipschitz-smooth (i.e. differentiable with Lipschitz gradient) and strongly convex on X , then the
conventional Langevin Monte Carlo (LMC) algorithm derived from an Euler-Maruyama discreti-
zation of the Langevin stochastic differential equation (SDE) is one of the most computationally
efficient methods to sample from π. In this paper, we endowX with a carefully designed Riemann-
ian structure and study the non-asymptotic convergence properties of a Riemannian generalization
of the LMC algorithm. The motivation is that by endowing X with an appropriate Riemannian ge-
ometry, it is possible to obtain algorithms with better convergence properties, and which can tackle
distributions that are beyond the scope of the Euclidean LMC algorithm. We consider Riemann-
ian structures of Hessian type (Shima, 2007); the corresponding metric is induced by the Hessian
D2φ(x) of some C2(X ) Legendre-type convex potential/entropy φ on X (see (Rockafellar, 1970,
Chapter 26) for a comprehensive account on Legendre functions).

Discrete scheme. In the same vein as in Hsieh et al. (2018), we consider a sampling analogue
of mirror-descent as an extension of the classical Euler-Maruyama discretization of the Langevin
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SDE, which reads, starting from some random vector X0 on X ,

Xk+1
def.
= ∇φ∗

(
∇φ(Xk)− hk+1∇f(Xk) +

√
2hk+1[D2φ(Xk)]ξk+1

)
.(1)

Here φ∗ is the Legendre-Fenchel conjugate of φ, i.e., φ∗(y)
def.
= supx∈X 〈x,y〉−φ(x), {hk}k∈N ⊂

R++ is the sequence of step-sizes, and {ξk}k∈N is a sequence of standard normal random vectors
that are mutually independent and independent of X0, which is either deterministic or random.
Let us recall the useful fact that φ is of Legendre type if and only if its conjugate φ∗ is of Legendre
type. Moreover, the gradient ∇φ of φ is a bijection from int dom(φ) = X to int dom(φ∗) = Y
and its inverse obeys (∇φ)−1 = ∇φ∗, see (Rockafellar, 1970, Theorem 26.5). Thus (1) makes
perfect sense as a single-valued mapping from X to X .

In the following, we call iteration (1) Hessian Riemannian Langevin Monte Carlo (HR-
LMC) algorithm. Note that Hsieh et al. (2018) does not study this method, and rather settles for
a different discretization, which is simpler to analyze (being a change of variable applied to the
Euclidean case) and enjoys theoretical guarantees that are markedly different from ours (we refer
to Section 1.2 for a detailed comparison).

In the case where ξk = 0 (optimization framework), one recovers the mirror descent mini-
mization algorithm (Nemirovsky and Yudin, 1983; Bauschke et al., 2017; Lu et al., 2018). The
classical Euclidean case is recovered when φ is the energy, i.e., φ(x) = ‖x‖22 /2. Other popu-
lar options to sample in X = Rp++ include Shannon entropy φ(x) =

∑
i xi log(xi) and Burg’s

entropy φ(x) = −
∑

i log(xi).
As mentioned previously, the key motivations behind switching from Euclidean LMC methods

to the HRLMC scheme are that by choosing an entropy φ adapted to f , one can either obtain
better smoothness and strong convexity properties or even recover smoothness and strong convex-
ity relative to φ in cases where f is neither Lipschitz-smooth nor strongly convex in the standard
Euclidean geometry. The goal of this paper is to provide the first step toward a theoretical un-
derstanding of these phenomena, by establishing a non-asymptotic upper-bound on the error in
a properly designed Wasserstein distance for sampling from π using HRLMC. The terms in the
bound explicitly reflect the interleaved geometries of f and φ.

Continuous flow. It can be shown that the HRLMC algorithm (1) can be viewed as a discretization
of a Riemannian SDE. Denoting Yt

def.
= ∇φ(Xt), this SDE reads

dYt = −∇f ◦ ∇φ∗(Yt)dt+
√

2[D2φ∗(Yt)]−1dBt,(2)

where {Bt}t≥0 is a standard p-dimensional Brownian motion. If moreover φ ∈ C3(X ), then
Legendreness of φ entails that the SDE on Xt reads

dXt =
(
θ(Xt)− [D2φ(Xt)]

−1∇f(Xt)
)
dt+

√
2[D2φ(Xt)]−1dBt,(3)

where the additional drift term θ(Xt)
def.
= −[D2φ(Xt)]

−1Tr
(
D3φ(Xt)[D

2φ(Xt)]
−1
)
. Moreover,

the corresponding density can be shown to satisfy a Fokker-Planck equation that has π as its
stationary solution (we omit the details for the sake of brevity). When φ(x) = ‖x‖22 /2, then
Xt = Yt, and (2) and (3) coincide with the standard Langevin diffusion. The SDE (3), viewed
as Brownian motion on a Hessian manifold corrected by a Riemannian drift term, is then its
natural generalization to a Riemannian manifold with a Hessian structure. The SDE (2) appeared
in earlier preprint versions of Hsieh et al. (2018), while the SDE (3) is a particular case of the
so-called Riemannian Langevin dynamics as shown in Roberts and Stramer (2002). We will show
in Appendix A that both (2) and (3) are well-posed, under a self-concordance-like condition (A1)
and a relative Lipschitz-smoothness condition (A4).

1.2. Previous work. The goal of this paper is to provide non-asymptotic upper-bounds on the
Wasserstein distance, with an appropriate ground cost, between the distribution µk of Xk and the
target distribution π.
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Langevin Monte Carlo (LMC) under (strong) log-concavity. The Euclidean LMC, correspon-
ding to φ(x) = ‖x‖22 /2, has been extensively studied in the literature, where non-asymptotic
error bounds have been established under various sampling error metrics (Kullback-Leibler, Total-
Variation, or Wasserstein). The case where f is m-strongly convex with a M -Lipschitz gradient
is the one that has been most widely studied (Dalalyan, 2017a,b; Durmus and Moulines, 2017;
Cheng and Bartlett, 2018; Durmus and Moulines, 2019; Dalalyan and Karagulyan, 2019; Durmus
et al., 2019; Dwivedi et al., 2018). In particular, (Dalalyan and Karagulyan, 2019) have shown
that, when using a constant step-size hk = h ∈ (0, 2

M ), the distribution of LMC algorithm sam-
ples converge to the targed distribution with a contraction factor ρ = max(1 − mh,Mh − 1).
More precisely,

W2(µk, π) ≤ ρkW2(µ0, π) +
1.65Mh

3
2 p

1
2

1− ρ
≤ (1−mh)kW2(µ0, π) + 1.65(M/m)(ph)

1
2 , if h ≤ 2/(m+M),

(4)

where W2 is the 2-Wasserstein distance between two probability measures, i.e.,

W 2
2 (µ, ν)

def.
= inf

X∼µ,X′∼ν
E
[∥∥X−X′

∥∥2

2

]
.

This is the best known result in Wasserstein distance.
Durmus et al. (2018) studied the case of non-Lipschitz-smooth (strongly) convex f via Moreau-

Yosida regularization, and Bubeck et al. (2018); Brosse et al. (2017) the case of log-Lipschitz-
smooth strongly log-concave densities supported on a convex compact set. Cheng et al. (2017);
Dalalyan and Riou-Durand (2018) investigated the case of a kinetic Langevin diffusion (i.e., un-
derdamped LMC) for the same class of densities, showing that it leads to improved dependence
on the dimension and error.

Non-asymptotic sampling error bounds when f is Lipschitz-smooth and merely convex (but
not strongly so) have been established in the literature in KL and TV Durmus et al. (2019), and in
Wasserstein distance Dalalyan et al. (2019) for various discrete LMC schemes.

LMC beyond log-concavity. Obtaining convergence results is very difficult when f is not convex.
Luu et al. (2017) considered densities that are neither necessarily smooth nor log-concave and
provided asymptotic consistency guarantees. Assuming convexity at infinity, Cheng et al. (2018);
Majka et al. (2018) obtained convergence results in the 1-Wasserstein distance by using results in
Eberle (2016). When replacing convexity with a dissipativity condition, a non-asymptotic bound
was first provided by Raginsky et al. (2017) in the 2-Wasserstein distance, and then improved by
Chau et al. (2019). In Zhang et al. (2019), assumptions are further weakened by assuming only
local Lipschitz continuity of ∇f and by relaxing conditions of convexity at infinity and uniform
dissipativity.

Continuous Riemannian Langevin dynamics. The SDE (3) is a special case of the so-called
Riemannian Langevin dynamics, which appeared in Roberts and Stramer (2002); Girolami and
Calderhead (2011); Patterson and Teh (2013), when considering X as a Riemannian manifold
with Hessian metric D2φ. For this Riemannian Langevin SDE setting, it is known since Kent
(1978) that Xt has π as its unique invariant measure as long as Xt is non-explosive. For the
conditions on the non-explosion of diffusions, see Stroock and Varadhan (2007). Moreover, the
linear convergence theory of the corresponding Fokker-Planck equation is known since Arnold
et al. (2001), relying on the positivity of Bakry-Emery tensor; see (Bakry et al., 2014) for a com-
prehensive account. Discretization schemes of the Riemannian Langevin SDE (3) were proposed
in Roberts and Stramer (2002); Girolami and Calderhead (2011); Patterson and Teh (2013). For
instance, Roberts and Stramer (2002) provided a linear convergence result of the Ozaki discretiza-
tion under quite stringent conditions. In particular, for the Hessian manifold, this theory requires
φ to be strongly convex, which in turn restricts the target distribution to be strongly log-concave.
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In this paper, instead, we take the Euler-Maruyama discretization of (2) and map the process
back to Xk by the mirror map Xk = ∇φ∗(Yk). This is a key difference between our HRLMC
algorithm (1) and those proposed in Roberts and Stramer (2002); Girolami and Calderhead (2011);
Patterson and Teh (2013). However, the restriction to a Hessian Riemannian geometry is crucial
in our method and theory, which strongly rely on convex analysis tools and bijective duality map-
pings. To the best of our knowledge, there is no proof of convergence or error bounds for such
Euler-Maruyama discretization of (2) or (3).

Relation to Hsieh et al. (2018). In 2018, Hsieh et al. (2018) studied a mirror-type discretization of
Langevin dynamics. Though it seems that their work shares apparent similarities with ours at first
glance, both their scheme and results are, however, markedly different from our HRLMC. More
precisely, a key difference lies in the fact that here, we use an appropriate diffusion term entailing
a Gaussian noise in the discrete scheme with iteration-dependent covariances that account for
the Hessian Riemannian structure. In contrast, Hsieh et al. (2018) adopted a standard Gaussian
noise instead. Moreover, they provided the existence of good mirror maps assuming f is strongly
convex and gave convergence of their sampling algorithm under 1-strongly convex mirror maps.
In this paper, we relax these requirements to relative versions and aim to generalize results from
the literature relying on strong convexity and Lipschitz-smoothness of f .

1.3. Contributions. In this paper, by relaxing strong convexity and Lipschitz-smoothness of f to
the relative versions with respect to a Legendre-type entropy φ, we prove that, if the step-sizes hk
are chosen sensibly, the law of discrete process (1) contracts into a Wasserstein ball centered at
the desired invariant distribution, whose radius is given explicitly. This Wasserstein distance relies
on a ground cost, which is a Riemannian distance that captures the squared Hessian structure of
the manifold. In fact, convergence to π is not achieved in general unless φ is quadratic, but our
bound allows us to isolate a bias term that depends on the interleaved geometries of f and φ.
In particular, our method recovers the state-of-the-art non-asymptotic sampling error bounds in
Wasserstein distance when φ(x) = ‖x‖22 /2 (Dalalyan and Karagulyan, 2019).

Section 2 states the main contribution of this paper, Proposition 2.1, whose proof relies on a
more general result (Theorem 3.1) detailed in Section 3. In the appendices, we collect all details
of the discussions and proofs. This includes discussions of our assumptions (e.g., intuition behind
condition (A1), relation of (A3) and (A4) to relative strong convexity and relative smoothness).
We also present a generalized Baillon-Haddad inequality (8) that is of independent interest, and
give the detailed proofs of Proposition 2.1, Corollary 3.2, and Proposition 3.4. We also report
some numerical experiments to illustrate and support our theoretical predictions.

Notations. Thought out the paper,Mk×l is the ring of k× l matrices on R. ‖v‖2 is the Euclidean
norm of a vector v; for a matrix M ∈Mk×l, ‖M‖2 stands for its spectral norm. That is, ‖M‖2 =√
λmax(MTM), where λmax represents the largest value of eigenvalues. By definition, ‖M‖2 ≤

δ is equivalent to MTM � δ2Ip, i.e., MTM − δ2Ip is negative semi-definite. Another matrix

norm we use here is the Frobenius norm ‖M‖F =
√∑

i,j=1 M
2
ij =

√
Tr(MTM), where Tr

is the trace operator. The commutator of two square matrices M1,M2 ∈ Mp×p is denoted as
[M1,M2]

def.
= M1M2 −M2M1.

2. MAIN CONTRIBUTIONS

In this section, we state our main contributions, namely that the HRLMC algorithm (1) contracts
into a Wasserstein ball centered at the invariant measure.
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2.1. Assumptions on φ and f . In the following, we assume that the domain X ⊂ Rp is open,
contractible and ∇

(
dπ
dx

)
= 0 on its boundary ∂X . To avoid technical issues, we assume that both

f and φ are in C3(X ) and φ is of Legendre type.

Self-concordance-like condition on φ. Our first condition imposes the existence of κ ≥ 0 such
that

(A1) ∀(x,x′) ∈ X 2,
√

2
∥∥∥D2φ(x)

1
2 −D2φ(x′)

1
2

∥∥∥
F
≤ κ

∥∥∇φ(x)−∇φ(x′)
∥∥

2
.

In 1D, it is easy to check that this condition is equivalent to self-concordance. The general case
is more intricate. (A1) is important to guarantee the existence and uniqueness of the strong solution
of continuous dynamics (2) (see (Øksendal, 2003, Theorem 5.2.1)). In fact, if it is violated, the
Lipschitz condition of the SDE also fails, which removes the general theoretical guarantee for (2)
to have an unique solution. See Appendix A for further details.

Moment condition on the Hessian of φ. The second constant involved in our analysis is

(A2) R
def.
= EX∼π

[∥∥D2φ(X)
∥∥

2

]
=

∫
X

∥∥D2φ(x)
∥∥

2
e−f(x)dx < +∞.

Relative strong convexity and Lipschitz-smoothness. In this paper, we relax the usual strong
convexity and Lipschitz-smoothness conditions to versions relatively to φ: there exists m ≥ 0,
M > 0 such that ∀(x,x′) ∈ X 2,

m
∥∥∇φ(x)−∇φ(x′)

∥∥2

2
≤ 〈∇f(x)−∇f(x′),∇φ(x)−∇φ(x′)〉;(A3) ∥∥∇f(x)−∇f(x′)

∥∥
2
≤M

∥∥∇φ(x)−∇φ(x′)
∥∥

2
.(A4)

In the Euclidean case when φ(x) = ‖x‖2 /2, one recovers the usual notion of strong convexity of
f and Lipschitz continuity of its gradient. The condition (A3) and (A4) imply, respectively, the
relative strong convexity and relative Lipschitz-smoothness defined in Lu et al. (2018); Bauschke
et al. (2017). More precisely, they imply that mD2φ(x) � D2f(x) �MD2φ(x), for all x ∈ X .
The converse is not true in general. See details in Appendix B.

Bound on the commutator of D2φ and D2f . Whenever the Hessians D2f and D2φ do not
commute, we require the following assumption to quantify the commutator:

(A5) ∃δ ≥ 0, ∀x ∈ X ,
∥∥[(D2φ(x))−1, D2f(x)

]∥∥
2
≤ δ.

This control is crucial to prove the generalized Baillon-Haddad inequality (Proposition 3.3).

2.2. Wasserstein Distance. While the de-facto geodesic distance onX endowed with the Hessian
structure is the Riemannian distance associated with D2φ(x), this distance cannot be computed in
closed form. We thus settle for a simpler one, which is the Riemannian distance d associated with
the squared Hessian [D2φ(x)]2. One can check that the diffeomorphism ∇φ : (X , [D2φ(x)]2)→
(Y, Ip) is an isometry (see (do Carmo, 1992, Chapter 1) for a detailed account on the isometry of
Riemannian manifolds). Therefore, d(x,x′) = ‖∇φ(x)−∇φ(x′)‖2 for any x,x′ ∈ X .

With this ground distance, the natural associated geometric distance on the space of probability
distributions on X is the Wasserstein distance

W 2
2,φ(µ, ν)

def.
= inf

x∼µ,x′∼ν
E
[
d2(x,x′)

]
= inf

x∼µ,x′∼ν
E
[∥∥∇φ(x)−∇φ(x′)

∥∥2

2

]
.(5)

When φ(x) = ‖x‖2 /2, one recovers the usual W2 distance used in (4).
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2.3. Statement of the main result. From now on, we assume that conditions (A1)–(A5) are
satisfied. Denote by µk the distribution of the k-th iterate Xk in (1), i.e., Xk ∼ µk, and define

κ̃
def.
=

√
κ2 +

δ(4M + δ)

2(m+M)
.

Our main contribution is Theorem 3.1, whose statement and proof will be given shortly in a fort-
hcoming section. For the sake of clarity, we first apply it below to the case of constant step-sizes,
which makes it easier to get the gist of our main result and compare it with existing works.

Proposition 2.1 (Constant step-size). Assume conditions (A1)–(A5) are satisfied with κ̃ <
√

2m

and hk = h < min
(

2m−κ̃2
m2 , 2M−κ̃2

M2

)
. Then

W2,φ(µk, π) ≤ ρkW2,φ(µ0, π) + h
3
2 p

1
2 (1− ρ)−1β2(R,M, κ) + hp

1
2 (1− ρ)−1β1(R, κ),(6)

where ρ def.
= max

(√
(1−mh)2 + hκ̃2,

√
(1−Mh)2 + hκ̃2

)
< 1, β1(R, κ)

def.
= κR

1
2 , and

β2(R,M, κ)
def.
= M

1
2R

1
2

(
7
√

2M
6 + κ√

3

)
are dimension-free constants.

The error upper-bound is composed of three terms. The first one comes from the time finiteness
that decreases exponentially, while the second corresponds to the discretization error. These two
terms are standard in LMC. The last term is new and reveals the price to be paid if one trades the
standard strong convexity and Lipschitz-smoothness for their relative versions in the Riemannian
geometry induced by φ. If h is sufficiently small, one can see that (1 − ρ)−1 = O(h−1), where
the constant in the order depends on (m,M, κ, δ). In turn, the discretization error term will scale
as O(β2(R,M, κ)p1/2h1/2), which vanishes as h → 0, while the last term is O(β1(R, κ)p1/2).
The latter is a bias term. We conjecture that the bias is unavoidable and that our contraction
analysis is tight. Indeed, this term is not an artifact of the proof since the estimates are based on
sharp inequalities for which lower bounds are available. This is also confirmed by the numerics
discussed in the appendix.

Moreover, our analysis recovers exactly known results for the particular case when f is m-
strongly convex and has an M -Lipschitz continuous gradient, hence satisfying conditions (A1)–
(A5) with φ(x) = ‖x‖2 /2, κ = 0, R = 1, δ = 0, β1 = 0, β2 = 7

√
2M
6 , κ̃ = 0, ρ = max{1 −

mh,Mh− 1}, and W2,φ = W2. In this case, the bias term vanishes, and Proposition 2.1 recovers
the sampling error bound of LMC from (Dalalyan and Karagulyan, 2019, Theorem 1), recalled in
(4).

Besides, our proposition covers new cases not known in the literature, as shown in the forthco-
ming section. We want to emphasize that the condition κ̃ <

√
2m is essential as it connects the

key parameters m,M, κ, δ, which summarize the interleaved geometries of f and φ. It requires
κ <
√

2m even if δ = 0. We now illustrate this condition and assumptions (A1)–(A5) with several
examples.

2.4. Examples. In this section, we provide two tables to include some examples that satisfy the
assumptions (A1)–(A5) and condition κ̃ <

√
2m with explicit parameters. As κ is the only

constant that depends merely on φ, Table 1 presents a list of entropy functions that satisfy (A1)
or not, while Table 2 gives the constants involving interplay between φ and f . For instance, in
the example of Gamma distribution (Table 2, middle column), one can see clearly how dimension
enters the game via m and M .

1. More generally, φ(x) =
∑p

i=1 φi(xi) satisfies (A1) with κ =
√

2M ′ provided that
[(φ∗i )

′′]−
1
2 has an M ′-Lipschitz continuous gradient for each i. If f(x) =

∑p
i=1 fi(xi),

then it satisfies (A2) and (A5) with R ≤
∑

iEx∼π[φ′′i (xi)] and δ = 0. Besides, (A3) and
(A4) are satisfied if, for each i, fi is m-strongly convex and has an M -Lipschitz continu-
ous gradient relatively to φi, in the sense of Lu et al. (2018).
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TABLE 1. Common entropy functions and the corresponding κ in (A1)

φ κ Domain

‖x‖2 /2 0 Rp
−
∑

i log(xi)
√

2 Rp++∑
i xi log(xi) ∞ Rp++

− log(x)− log(1− x)
√

2 (0, 1)∑
i aixi log(xi)−

∑
i(1− ai) log(xi)

√
2

1−maxi ai
Rp++; ai ∈ [0, 1]

(1− x2)−1 1.43 (−1, 1)

− log(x2
2 − x2

1)
√

2 {(x1, x2) : |x1| < x2}
− log(1− x2)

√
2 (−1, 1)

TABLE 2. Other parameters in the assumptions (A2)–(A5)

φ = ‖x‖2 /2 φ = −
∑p

i=1 log(xi) φ = − log(x)− log(1− x)
f = xTAx/2 + C f =

∑
i(1− ai) log(xi) f = (1− a1) log(x)

(AT = A) +bixi + C +(1− a2) log(1− x) + C

R 1
∑

i(ai − 3)!/bai−2
i

(a1−3)!(a2−1)!+(a1−1)!(a2−3)!
(a1+a2−3)!

m λmin(A) mini{ai − 1} min{a1 − 1, a2 − 1}
M λmax(A) maxi{ai − 1} max{a1 − 1, a2 − 1}
δ 0 0 0

κ̃ <
√

2m A is positive definite ai > 2, ∀i a1, a2 > 2

2. Boltzmann-Shannon entropy: When φ(x) =
∑p

i=1 xi log(xi), however, condition (A1) is
violated on Rp++.

3. PROOF OF THE MAIN RESULT

3.1. A general non-asymptotic error bound. We are now in position to state our main theorem.

Theorem 3.1 (Contractibility). Assume that (A1)–(A5) hold such that κ̃ <
√

2m. Suppose
hk+1 < min

(
2m−κ̃2
m2 , 2M−κ̃2

M2

)
. Then

W2,φ(µk+1, π) ≤ ρk+1W2,φ(µk, π) + hk+1p
1
2β1(R, κ) + h

3
2
k+1p

1
2β2(R,M, κ).(7)

Here ρk+1
def.
= max

(√
(1−mhk+1)2 + hk+1κ̃2,

√
(1−Mhk+1)2 + hk+1κ̃2

)
< 1, β1(R, κ) =

κR
1
2 , and β2(R,M, κ) = M

1
2R

1
2

(
7
√

2M
6 + κ√

3

)
are dimension-free constants.

The main arguments to prove Theorem 3.1 will be given in Section 3.2 and 3.3. This result
implies in particular Proposition 2.1 when the step-sizes are constant. Besides, the result in (7) is
invariant in scalings like φ̃ = αφ for any α > 0.

Theorem 3.1 has the next corollary. In a nutshell, this corollary states that with vanishing step-
sizes, the HRLMC algorithm contracts toward a Wasserstein ball centered at the target distribution

π with radius r0. The explicit formula of this radius is r0
def.
= 2κp

1
2R

1
2

2m−κ̃2 , which scales as O(p
1
2 )

in the dimension. This formula is derived from (7) upon applying Lemma D.4 (see (44) and the
proof of Corollary 3.2). Moreover, once entering the ball, the distribution µk never leaves it.
When φ = ‖x‖2 /2, it is clear that r0 = 0 and therefore the algorithm converges to the stationary
distribution.
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In the following, we use the notation Br(π)
def.
= {µ ∈ P(X )|W2,φ(µ, π) < r} and Br(π)

def.
=

{µ ∈ P(X )|W2,φ(µ, π) ≤ r}, where P(X ) is the space of probability distributions on X .

Corollary 3.2 (Contracting to a Wasserstein ball). Assume (A1)–(A5) hold with κ̃ <
√

2m. Then
the following statements hold:

(i) For any µ0 ∈ P(X ), there exist step-sizes {hk}k∈N such that lim sup
k→∞

W2,φ(µk, π) ≤ r0.

(ii) If µk /∈ Br0(π), then there exists a step-size hk+1 such thatW2,φ(µk+1, π) < W2,φ(µk, π).
(iii) If µk ∈ Br0(π), then there exists hk+1 > 0 such that µk+1 ∈ Br0(π).
(iv) If µk ∈ Br0(π) \ Br0(π), then for any r > r0, there exists hk+1 > 0, such that µk+1 ∈
Br(π).

The proof can be found in Appendix D where we also construct an example of appropriate
vanishing step-sizes {hk}k∈N that are in the order of 1

k , and which guarantees that the claims of
Corollary 3.2 hold.

Iteration complexity bounds. From these guarantees, for any ε > 0 small enough, we can
now derive the smallest number of iterations Kε (i.e., iteration complexity bound), such that the
corresponding upper-bound of HRLMC with constant step-size is smaller than r0 + ε after Kε

steps. More precisely, for any ε such that 0 < ε < min

(
4
√

2p
1
2 β2

m
√

2m−κ̃2 ,
2κ̃2p

1
2 β1

(2m−κ̃2)2
,

32p
1
2 β2

2
κ̃2(4m−κ̃2)2β1

)
,

the number of iterations needed to get W2,φ(µk, π) < r0 + ε with constant step-size is

Kε &
pMR

(√
M + κ

)2

(2m− κ̃2)3

1

ε2
log

(
1

ε

)
.

When κ = 0, this becomes

Kε &
p(m+M)3M2R

(4m2 + 4M(m− δ)− δ2)3

1

ε2
log

(
1

ε

)
.

In the classical case when f is m-strongly convex and has an M -Lipschitz continuous gradient,
the bound becomes

Kε &
pM2

m3ε2
log

(
1

ε

)
,

which coincides with the best result in the literature of Euler-Maruyama LMC (See (Durmus et al.,
2019, Table 1) for an overview).

3.2. Baillon-Haddad type inequality. Baillon and Haddad showed that if the gradient of a con-
vex and continuously differentiable function is nonexpansive, then it is firmly nonexpansive (Bail-
lon and Haddad (1977)). This is one of the critical steps in the proof of convergence when
φ(x) = ‖x‖2 /2. We extend the Baillon-Haddad theorem to the case of relative Lipschitz-
smoothness (A4). We state a weaker version here, which is sufficient for the proof of the main
theorem, and defer a stronger version with proof to the Appendix C, which is of independent
interest.

Proposition 3.3 (Baillon-Haddad extension). Assume f satisfies assumptions (A3)-(A5), then for
any x1,x2 ∈ X ,

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉

≥A ‖∇f(x1)−∇f(x2)‖22 +B ‖∇φ(x1)−∇φ(x2)‖22 ,
(8)

where the constants are A def.
= 1

m+M and B def.
= 4mM−4Mδ−δ2

4(m+M) .
8



3.3. Proof of Theorem 3.1. We first state a proposition that is useful in this section. Its proof is
postponed to Appendix D.

Proposition 3.4. Let L0 be any random vector drawn from π and Lt be a continuous dynamics
satisfying (10). Then for any s > 0, one has√

E
[
‖∇φ(L0)−∇φ(Ls)‖22

]
≤ s
√
MpR+

√
2spR.(9)

Proof of Theorem 3.1.
For notation simplicity, we use h, and ρ to represent hk+1, and ρk+1, respectively. Let L0

be a random vector drawn from π such that W 2
2,φ(µk, π) = E

[
‖∇φ(L0)−∇φ(Xk)‖22

]
. Let

Bt =
√
tξk+1, independent of (Xk,L0). Define a stochastic process L such that

∇φ(Lt) = ∇φ(L0)−
∫ t

0
∇f(Ls)ds+

√
2

∫ t

0
[D2φ(Ls)]

1
2dBs.(10)

Then, by (A1), {Lt : t ≥ 0} has π as its stationary distribution and Lt ∼ π for all t > 0. On the
other hand, our HRLMC algorithm reads

∇φ(Xk+1) = ∇φ(Xk)− h∇f(Xk) +
√

2h[D2φ(Xk)]ξk+1.(11)

Let

A
def.
=∇φ(L0)−∇φ(Xk)− h(∇f(L0)−∇f(Xk)),

C
def.
=

∫ h

0
(∇f(L0)−∇f(Ls)) ds,

G
def.
=
√

2h
(

[D2φ(L0)]
1
2 − [D2φ(Xk)]

1
2

)
ξk+1,

H
def.
=
√

2

∫ h

0

(
[D2φ(Ls)]

1
2 − [D2φ(L0)]

1
2

)
dBs.

By definition of W 2
2,φ and triangle inequality, one has

W2,φ(µk+1, π) ≤
√

E
[
‖∇φ(Lh)−∇φ(Xk+1)‖22

]
=

√
E
[
‖A + C + G + H‖22

]
≤
√

E
[
‖A + G‖22

]
+

√
E
[
‖C‖22

]
+

√
E
[
‖H‖22

]
.

(12)

Below, we estimate the three terms in the right-hand side separately.

1. Define ρ =
√
τ2 + hκ2, where

τ2 =

{
(1−mh)2 + hδ(4M+δ)

2(m+M) , for h ∈ (0, 2
m+M );

(1−Mh)2 + hδ(4M+δ)
2(m+M) , for h ∈ ( 2

m+M ,
2
M ).

9



One can check that ρ < 1 because of κ̃2 < 2m and h < min
(

2m−κ̃2
m2 , 2M−κ̃2

M2

)
. There-

fore, by Proposition 3.3, we have

E
[
‖A‖22

]
=E

[
‖∇φ(L0)−∇φ(Xk)‖22 + h2 ‖∇f(L0)−∇f(Xk)‖22

− 2h〈∇f(L0)−∇f(Xk),∇φ(L0)−∇φ(Xk)〉
]

≤E
[(

1− h(4mM − 4Mδ − δ2)

2(m+M)

)
‖∇φ(L0)−∇φ(Xk)‖22

+ h

(
h− 2

m+M

)
‖∇f(L0)−∇f(Xk)‖22

]
≤τ2W 2

2,φ(µk, π).

(13)

The last inequality is derived from (A4) if h ∈
(

2
m+M ,

2
M

)
or (A3) if h ∈

(
0, 2

m+M

)
.

On the other hand, from Itô’s isometry (Lemma D.1) and assumption (A1), we have

E[‖G‖22] =E

[
h
∥∥∥√2

(
[D2φ(L0)]

1
2 − [D2φ(Xk)]

1
2

)∥∥∥2

F

]
≤hE

[
κ2 ‖∇φ(L0)−∇φ(Xk)‖22

]
=hκ2W 2

2,φ(µk, π).

(14)

Note that E [〈A,G〉] = 0, since ξk+1 is independent of (Xk,L0). Therefore, combi-
ning equations (13) and (14), one has√
E
[
‖A + G‖22

]
=

√
E
[
‖A‖22 + ‖G‖22

]
≤
√

(τ2 + hκ2)W2,φ(µk, π) = ρW2,φ(µk, π).(15)

2. Applying Minkowski’s integral inequality (Lemma D.2), assumption (A4), and Proposi-
tion 3.4, √

E
[
‖C‖22

]
≤
∫ h

0

√
E
[
‖∇f(L0)−∇f(Ls)‖22

]
ds

≤M
∫ h

0

√
E
[
‖∇φ(L0)−∇φ(Ls)‖22

]
ds

≤M
∫ h

0

(
s
√
MpR+

√
2spR

)
ds

≤ 7
√

2

6
Mh

3
2 p

1
2R

1
2 .

3. By Itô’s isometry, assumption (A1), and Proposition 3.4,

E
[
‖H‖22

]
=

∫ h

0
E

[∥∥∥√2
(

[D2φ(Ls)]
1
2 − [D2φ(L0)]

1
2

)∥∥∥2

F

]
ds

≤ κ2

∫ h

0
E
[
‖∇φ(Ls)−∇φ(L0)‖22

]
ds

≤ κ2

∫ h

0

(
s
√
MpR+

√
2spR

)2
ds

≤ κ2h2pR

(
1 +

√
M

3
h

1
2

)2

.
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In conclusion, combining (12) and the above, we arrive at

W2,φ(µk+1, π) ≤
√
E
[
‖A + G‖22

]
+

√
E
[
‖C‖22

]
+

√
E
[
‖H‖22

]
≤ ρW2,φ(µk, π) +

7
√

2

6
Mh

3
2 p

1
2R

1
2 + κhp

1
2R

1
2 +

√
M

3
κh

3
2 p

1
2R

1
2

= ρW2,φ(µk, π) + hp
1
2β1(R, κ) + h

3
2 p

1
2β2(R,M, κ).

�

CONCLUSION

In this paper, we have proposed the first theoretical guarantees for the discretized Langevin
counterpart of the celebrated mirror descent algorithm to sample from distributions whose densi-
ties are not necessarily log-concave nor log-Lipschitz-smooth. We showed that it is a stable dis-
cretization of the continuous Riemannian Langevin flow, more precisely, that it contracts toward
a Wasserstein ball associated with a Hessian squared Riemannian metric. This analysis highlights
the critical role played by the self-concordance of the entropy function and the relative anisotropy
of the entropy and log-distribution (controlled by bounding the associated commutator).
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APPENDIX A. WELL-POSEDNESS OF (2)

Let us recall the SDE (2),

dYt = −∇f ◦ ∇φ∗(Yt)dt+
√

2[D2φ∗(Yt)]−1dBt.

Let Y def.
= ∇φ(X ). The following conditions are usually required for existence and uniqueness of

(strong) solutions to this SDE in time interval [0, T ] (see (Øksendal, 2003, Theorem 5.2.1)):
• Lipschitz condition: there exists K1 > 0, such that for all vectors y1,y2 ∈ Y (and all
t ∈ [0, T ]),

√
2
∥∥∥D2φ∗(y1)−

1
2 −D2φ∗(y2)−

1
2

∥∥∥
F

+ ‖∇f(∇φ∗(y1))−∇f(∇φ∗(y2))‖2 ≤ K1 ‖y1 − y2‖2 .
(16)

Let xi = ∇φ∗(yi) for i = 1, 2. Then the above inequality is equivalent to, for all x1,x2 ∈
X ,

√
2
∥∥∥D2φ(x1)

1
2 −D2φ(x2)

1
2

∥∥∥
F

+ ‖∇f(x1)−∇f(x2)‖2 ≤ K1 ‖∇φ(x1)−∇φ(x2)‖2 .

In view of assumptions (A1) and (A4), the Lipschitz condition (16) holds with K1 =
M + κ.
• Growth condition: there exist K2 > 0, such that for all y ∈ Y (and t ∈ [0, T ]),

2
∥∥∥[D2φ∗(y)]−

1
2

∥∥∥2

F
+ ‖∇f ◦ ∇φ∗(y)‖22 ≤ K2(1 + ‖y‖22).(17)
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Similarly, this is equivalent to the existence of K2 > 0 such that for all x ∈ X ,

2
∥∥∥[D2φ(x)]

1
2

∥∥∥2

F
+ ‖∇f(x)‖22 ≤ K2(1 + ‖∇φ(x)‖22).

Again, owing to (A1) and (A4), one easily sees that (17) holds with K2 depending on M
and κ.

Remark A.1. Although the Lipschitz and Growth conditions are general requirements to guaran-
tee the existence and uniqueness of solutions to SDE (2), one can easily check that the Lipschitz
condition implies the other one.

Remark A.2. Examples of entropies φ verifying for instance (A1) are given in the text, e.g.,
Burg’s entropy φ(x) = − log(x) on R++. However, this does hold for the Boltzmann-Shannon
φ(x) = x log(x) on R++.

APPENDIX B. ASSUMPTION (A3) V.S. RELATIVE STRONG CONVEXITY; AND (A4) V.S.
RELATIVE SMOOTHNESS

Throughout, f and φ are assumed C2(X ). By Cauchy-Schwarz inequality, (A3) implies

∃m ≥ 0, s.t. m
∥∥∇φ(x)−∇φ(x′)

∥∥
2
≤
∥∥∇f(x)−∇f(x′)

∥∥
2
∀x,x′ ∈ X .(18)

Since X is open, for any x ∈ X , (18) and (A4) implies that for all z ∈ Rp and t sufficiently
small

m ‖∇φ(x + tz)−∇φ(x)‖2 ≤ ‖∇f(x + tz)−∇f(x)‖2 ≤M ‖∇φ(x + tz)−∇φ(x)‖2 .

Dividing by t and passing to the limit as t→ 0+, we get

m
∥∥D2φ(x)z

∥∥
2
≤
∥∥D2f(x)z

∥∥
2
≤M

∥∥D2φ(x)z
∥∥

2
, ∀x ∈ X , ∀z ∈ Rp.

Squaring, this is equivalent to

(19) m2
〈
(D2φ(x))2z, z

〉
≤
〈
(D2f(x))2z, z

〉
≤M2

〈
(D2φ(x))2z, z

〉
, ∀x ∈ X , ∀z ∈ Rp,

or

(20) (mD2φ(x))2 � (D2f(x))2 � (MD2φ(x))2, ∀x ∈ X .

where � is the Loewner order defined by the cone of positive semi-definite matrices. We recall
the following lemma due to (Stępniak, 1987, Theorem 1).

Lemma B.1. For any positive semidefinite matrices A and B, if A2 � B2, then A � B.

Applying this lemma with A = MD2φ(x) and B = D2f(x), and then with A = D2f(x) and
B = mD2φ(x), we conclude that (20) implies

(21) mD2φ(x) � D2f(x) �MD2φ(x), ∀x ∈ X .

According to (Bauschke et al., 2017, Proposition 1.(i, ii)), (21) is equivalent to smoothness and
strong convexity of f relatively to φ, as defined in Lu et al. (2018).

Overall, we have proved the following claim.

Proposition B.2. Suppose that f and φ areC2(X ). Then (A3) impliesm-strong relative convexity
with respect to φ and (A4) implies M -relative smoothness of f with respect to φ, i.e. (21) holds.

Observe that the converse implication in Lemma B.1 does not hold in general, see Stępniak
(1987), and thus (21) 6⇒ (20) in general. In turn assumptions (A3) and (A4) are strictly stronger
than relative smoothness and strong convexity.
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APPENDIX C. PROOF OF A STRONGER VERSION OF PROPOSITION 3.3, THE
BAILLON-HADDAD TYPE INEQUALITY

In this section, we will prove a Baillon-Haddad type inequality, as in Proposition 3.3, but with
weaker assumptions. This inequality serves as an essential step in the proof of Theorem 3.1.

In the following, we denote byMl×n the space of all matrices that have l rows and n columns
and whose entries have real values.

Lemma C.1 ((Horn and Johnson, 2012, Example 5.6.6)). For any matrix M ∈ Ml×n, ‖M‖2 =

maxv∈Rn
‖Mv‖2
‖v‖2

.

Remark C.2. From the above lemma, it is clear that ‖M1M2‖2 ≤ ‖M1‖2 ‖M2‖2 for any M1 ∈
Mk×l and M2 ∈Ml×n.

Definition C.3 (Contractibility). We say a domain U ⊂ Rp is contractible if there exists some
point c ∈ U such that the constant map x 7→ c is homotopic to the identity map on U .

Definition C.4 (Differential Forms). Let 0 ≤ k ≤ p. A differential k-form g : U → Λk will
be written as g =

∑
1≤i1<···<ik≤p gi1···ikdx

i1 ∧ · · · ∧ dxik , where gi1···ik : U → R for every
1 ≤ i1 < · · · < ik ≤ p and Λk = Λk (Rp∗) with Rp∗ being the dual of Rp as a vector space.
When gi1···ik ∈ Cr(U) for every 1 ≤ i1 < · · · < ik ≤ p, we will write g ∈ Cr(U ; Λk).

Lemma C.5 (Poincaré lemma, (Csató et al., 2011, Theorem 8.1)). Let r ≥ 1 and 0 ≤ k ≤ p− 1
be integers and U ⊂ Rp be an open contractible set. Let g ∈ Cr(U ; Λk+1) with dg = 0 in U .
Then there exists G ∈ Cr(U ; Λk) such that dG = g in U .

Remark C.6. For relaxation on the contractibility of the domain and sharper regularity in Hölder
spaces, see (Csató et al., 2011, Theorem 8.3).

Proposition C.7 (Baillon-Haddad extension). Assume that X is contractible, φ is a Legendre
function on X , f and φ ∈ C3(X ) satisfying (A5), and that there exist 0 ≤ m ≤ M such that for
any x1,x2 ∈ X ,

m ‖∇φ(x1)−∇φ(x2)‖22 ≤ 〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉 ≤M ‖∇φ(x1)−∇φ(x2)‖22 .
(22)

Then for all x1,x2 ∈ X , we have
〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉

≥ 1

m+M
‖∇f(x1)−∇f(x2)‖22 +

4mM − 4Mδ − δ2

4(m+M)
‖∇φ(x1)−∇φ(x2)‖22 .

(23)

Remark C.8. 1. Under the same assumptions as above and assuming D2φ and D2f are commu-
table, then for any x1,x2 ∈ X ,

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉

≥ 1

m+M
‖∇f(x1)−∇f(x2)‖22 +

mM

m+M
‖∇φ(x1)−∇φ(x2)‖22 .

(24)

2. If, in addition, m = 0, then the inequality becomes

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉 ≥ 1

M
‖∇f(x1)−∇f(x2)‖22 .(25)
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This is the canonical form of Baillon-Haddad inequality, which is equivalent to equation (24).
3. In general, if m = 0 (but δ may not), the inequality (23) implies relative Lipschitz smoothness

‖∇f(x1)−∇f(x2)‖2 ≤
(
M +

δ

2

)
‖∇φ(x1)−∇φ(x2)‖2 .(26)

Proposition C.7. Denote A(y) := D2f(∇φ∗(y)) and B(y) := D2φ∗(y).
Notice that

d

1

2

∑
i,j

[(AB)ji − (AB)ij ] dyi ∧ dyj


=
∑
i,j,l

1

2
d (∂jlf(∇φ∗)∂liφ∗ − ∂ilf(∇φ∗)∂ljφ∗) ∧ dyi ∧ dyj

=
∑
i,j,k,l

1

2

(
∂jlf(∇φ∗)∂likφ∗ − ∂ilf(∇φ∗)∂ljkφ∗ +

∑
m

∂jlmf(∇φ∗)∂mkφ∗∂liφ∗−

−
∑
m

∂ilmf(∇φ∗)∂mkφ∗∂ljφ∗
)
dyk ∧ dyi ∧ dyj

=
∑
i,j,k,l

1

6
· 0 dyk ∧ dyi ∧ dyj +

∑
i,j,k,l,m

1

6
· 0 dyk ∧ dyi ∧ dyj

=0.

By the Poincaré lemma, there exists a 1-form ω on Y such that

dω =
1

2

∑
i,j

[(AB)ji − (AB)ij ] dyi ∧ dyj(27)

Note that ω is a 1-form on Y , which corresponds to a vector field g : Y → Rp such that
ω = g · dy. Define g̃ := ∇f ◦ ∇φ∗ − g : Y → Rp.

By Stokes-Cartan theorem, for any U ⊂ Y , one has∫
∂U
∇f ◦ ∇φ∗ · dy =

∫
U
d

∑
j=1

∂jf(∇φ∗)dyj


=

1

2

∫
U

p∑
i,j=1

[(AB)ji − (AB)ij ] dyi ∧ dyj

=

∫
U
dω =

∫
∂U
ω =

∫
∂U

g · dy.

This implies, for any closed curve Γ on Y , one has∮
Γ
g̃ · dy = 0.

That is, g̃ is path-independent. Define f̃ as a function on Y from any given point y0 ∈ Y such that
f̃(y)

def.
= f̃(y0) +

∫
Γ g̃ · dy, where Γ is any smooth curve from y0 to y. Therefore,

∇f̃ = g̃ = ∇f ◦ ∇φ∗ − g.(28)

From (27), we know ∂igj = 1
2 [(AB)ji − (AB)ij ] , for all 1 ≤ i, j ≤ p. Thus, (28) implies

(D2f̃)ji =∂i∂j f̃ = ∂i(∂jf(∇φ∗)− gj) =
∑
k

∂jkf(∇φ∗) · ∂kiφ∗ − ∂igj

16



=(BA)ij +
1

2
[(AB)ij − (BA)ij ] =

1

2
[(AB)ij + (BA)ij ].

This shows that D2f̃ is symmetric and

D2f̃ =
1

2
(AB + BA) =

1

2

(
D2f ◦ ∇φ∗ ·D2φ∗ +D2φ∗D2f ◦ ∇φ∗

)
.(29)

By assumption, there exist 0 ≤ m ≤M such that for any x1,x2 ∈ X ,

m ‖∇φ(x1)−∇φ(x2)‖22 ≤ 〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉 ≤M ‖∇φ(x1)−∇φ(x2)‖22 .
This implies for any y1,y2 ∈ Y ,

m ‖y1 − y2‖22 ≤ 〈∇f(∇φ∗(y1))−∇f(∇φ∗(y2)),y1 − y2〉 ≤M ‖y1 − y2‖22 .
Thus, for any v ∈ Rp and y ∈ Y , one has

m ‖v‖22 ≤ vT
[D(∇f ◦ ∇φ∗)(y)]T + [D(∇f ◦ ∇φ∗)(y)]

2
v ≤M ‖v‖22 .

This reads, from (29),
mIp � D2f̃(y) �MIp

for all y ∈ Y . By the classical Baillon-Haddad theorem, we know

〈∇f̃(y1)−∇f̃(y2),y1 − y2〉 ≥
1

m+M

∥∥∥∇f̃(y1)−∇f̃(y2)
∥∥∥2

2
+

mM

m+M
‖y1 − y2‖22 .

(30)

Now let us estimate 〈g(y1) − g(y2),y1 − y2〉, 〈∇f̃(y1) − ∇f̃(y2),g(y1) − g(y2)〉, and
‖g(y1)− g(y2)‖22.

1. For any y1,y2 ∈ Y , and any t, s ∈ [0, 1], denote yt = ty1 + (1 − t)y2 and ys =

sy1 + (1− s)y2. Then g(y1)− g(y2) =
∫ 1

0 d (g(yt)) =
∫ 1

0 ∇g(yt) · (y1−y2)dt. Since
∇g(yt) is anti-symmetric,

〈g(y1)− g(y2),y1 − y2〉 =

∫ 1

0
(y1 − y2)T [∇g(yt)]

T (y1 − y2)dt

=
1

2

∫ 1

0
(y1 − y2)T [(∇g(yt))

T +∇g(yt)](y1 − y2)dt = 0.

(31)

2. As follows, for any t ∈ [0, 1], let C(t) := D2f(∇φ∗(yt))D2φ∗(yt) = A(yt)B(yt).
Then, by assumption,

∥∥C(t)T −C(t)
∥∥

2
≤ δ for all t ∈ [0, 1].

Therefore,

〈∇f̃(y1)−∇f̃(y2),g(y1)− g(y2)〉

=

p∑
l=1

(∂lf̃(y1)− ∂lf̃(y2)) · (gl(y1)− gl(y2))

=

p∑
l=1

∫ 1

0
d(∂lf̃(yt)) ·

∫ 1

0
d(gl(ys))

=

p∑
l=1

∫ 1

0

∑
i

∂ilf̃(yt) · (y1 − y2)idt ·
∫ 1

0

∑
j

∂jgl(ys) · (y1 − y2)jds

=

∫ 1

0

∫ 1

0

∑
i,j,l

(y1 − y2)i · ∂ilf̃(yt) · ∂jgl(ys) · (y1 − y2)jdsdt

=

∫ 1

0

∫ 1

0

∑
i,j,l

(y1 − y2)i ·
(A(yt)B(yt) + B(yt)A(yt))il

2

17



·
(A(ys)B(ys)−B(ys)A(ys))lj

2
· (y1 − y2)jdsdt

=
1

4

∫ 1

0

∫ 1

0
(y1 − y2)T

[(
C(t) + C(t)T

) (
C(s)−C(s)T

)]
(y1 − y2)dsdt.

Notice that∥∥(C(t) + C(t)T
) (

C(s)−C(s)T
)∥∥

2
≤
∥∥C(t) + C(t)T

∥∥
2

∥∥C(s)−C(s)T
∥∥

2
≤ 2Mδ.

Therefore,

〈∇f̃(y1)−∇f̃(y2),g(y1)− g(y2)〉 ≤ 1

4

∫ 1

0

∫ 1

0
2Mδ ‖y1 − y2‖22 dsdt =

1

2
Mδ ‖y1 − y2‖22 .

(32)

3. Similarly, one has

‖g(y1)− g(y2)‖22 =
1

4

∫ 1

0

∫ 1

0
(y1 − y2)T

[
(C(t)T −C(t))(C(s)−C(s)T )

]
(y1 − y2)dsdt,

and∥∥(C(t)T −C(t))(C(s)−C(s)T )
∥∥

2
≤
∥∥C(t)T −C(t)

∥∥
2

∥∥C(s)−C(s)T
∥∥

2
≤ δ2.

Thus,

‖g(y1)− g(y2)‖22 ≤
1

8

∫ 1

0

∫ 1

0
2δ2 ‖y1 − y2‖22 dsdt =

δ2

4
‖y1 − y2‖22 .(33)

Combining equations (30)-(33), one has

〈∇f ◦ ∇φ∗(y1)−∇f ◦ ∇φ∗(y2),y1 − y2〉

=〈∇f̃(y1)−∇f̃(y2),y1 − y2〉+ 〈g(y1)− g(y2),y1 − y2〉

=〈∇f̃(y1)−∇f̃(y2),y1 − y2〉

≥ 1

m+M

∥∥∥∇f̃(y1)−∇f̃(y2)
∥∥∥2

2
+

mM

m+M
‖y1 − y2‖22

≥ 1

m+M
‖∇f ◦ ∇φ∗(y1)−∇f ◦ ∇φ∗(y2)‖22 −

1

m+M
‖g(y1)− g(y2)‖22

− 2

m+M
〈∇f̃(y1)−∇f̃(y2),g(y1)− g(y2)〉+

mM

m+M
‖y1 − y2‖22

≥ 1

m+M
‖∇f ◦ ∇φ∗(y1)−∇f ◦ ∇φ∗(y2)‖22 +

4mM − 4Mδ − δ2

4(m+M)
‖y1 − y2‖22 .

By change of variables, this implies

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉

≥ 1

m+M
‖∇f(x1)−∇f(x2)‖22 +

4mM − 4Mδ − δ2

4(m+M)
‖∇φ(x1)−∇φ(x2)‖22 .

(34)

�
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APPENDIX D. PROOF OF PROPOSITION 2.1, COROLLARY 3.2, AND PROPOSITION 3.4

In this section, we first recall two lemmas that are used in the proof of Theorem 3.1, followed
by the proof of Proposition 2.1, Corollary 3.2, and Proposition 3.4. The Itô’s isometry theorem can
be found, for instance, in (Øksendal, 2003, Corollary 3.1.7) for the one-dimensional case. Here
we state its apparent consequence in the multidimensional case.

Lemma D.1 (Itô’s isometry). Let B : [0, T ]× Ω → Rp be the standard p-dimensional Brownian
motion and M : [0, T ]×Ω→ Rp×p be a matrix-valued stochastic process adapted to the natural
filtration of the Brownian motion. Then

E

[∥∥∥∥∫ T

0
MtdBt

∥∥∥∥2

2

]
= E

[∫ T

0
‖Mt‖2F dt

]
,(35)

whenever the integrals make sense.

Lemma D.2 (Minkowski’s integral inequality, (Stein, 1970, Appendix A)). Suppose that (S1, π1)
and (S2, π2) are two σ-finite measure spaces, l ≥ 1 and f : S1 × S2 → R+ is measurable, then{∫

S1

(∫
S2
f(x,y)dπ2(y)

)l
dπ1(x)

} 1
l

≤
∫
S2

(∫
S1
f l(x,y)dπ1(x)

) 1
l

dπ2(y).(36)

Remark D.3. Assume the same conditions as above, and fi : S1 × S2 → R+ are measurable for
i = 1, ...p, then{∫

S1

p∑
i=1

(∫
S2
fi(x,y)dπ2(y)

)l
dπ1(x)

} 1
l

≤
∫
S2

(∫
S1

p∑
i=1

f li (x,y)dπ1(x)

) 1
l

dπ2(y).(37)

It can be viewed as Minkowski’s inequality applying on (S1 × {1, ..., p}, π1 × π3) and (S2, π2),
where π3 is uniform measure up to a constant multiplication.

Proposition 2.1. From Theorem 3.1, one has

W2,φ(µk, π) ≤ρW2,φ(µk−1, π) + hp
1
2β1 + h

3
2 p

1
2β2

≤ρ · (ρW2,φ(µk−2, π) + hp
1
2β1 + h

3
2 p

1
2β2) + hp

1
2β1 + h

3
2 p

1
2β2

≤ · · ·

≤ρkW2,φ(µ0, π) + (hp
1
2β1 + h

3
2 p

1
2β2)(1 + ρ+ · · ·+ ρk−1)

=ρkW2,φ(µ0, π) + (hp
1
2β1 + h

3
2 p

1
2β2) · 1− ρk

1− ρ

<ρkW2,φ(µ0, π) +
hp

1
2β1 + h

3
2 p

1
2β2

1− ρ
.

The last inequality holds because 0 < ρ < 1. �

Lemma D.4 ((Chung, 1954, Lemma 1)). Let {wk}k∈N be a sequence of real numbers such that,
for all k,

wk+1 ≤
(

1− c

k

)
wk +

c1

ks+1
,(38)

where c > s > 0, c1 > 0. Then for any k,

wk ≤ c1(c− s)−1k−s + o(k−s).(39)
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Remark D.5. The same consequence (39) holds if c1 is replaced by c1 + o(1).

Corollary 3.2. 1. For any 0 < b1 <
2m−κ̃2

2 , there exists a1 > 0 such that hk = a1
k is small enough

and
ρk ≤ 1− b1hk

for all k ∈ N. Thus, from Theorem 3.1, we get

W2,φ(µk+1, π) ≤ ρk+1W2,φ(µk, π) + β2p
1/2h

3/2
k+1 + β1p

1/2hk+1

≤ (1− b1hk+1)W2,φ(µk, π) + p1/2(β1 + o(1))hk+1.
(40)

For any 0 < s < a1b1, set wk
def.
= hsk+1W2,φ(µk, π). Multiplying both sides of (40) by hsk+2, and

using the fact that {hk}k∈N is a decreasing sequence, we get

wk+1 ≤
(

1− a1b1
k + 1

)
wk +

as+1
1 p1/2(β1 + o(1))

(k + 1)s+1
.(41)

Applying Lemma D.4 with its Remark D.5, we have

wk ≤ as+1
1 p1/2(β1 + o(1))(a1b1 − s)−1(k + 1)−s + o((k + 1)−s).

From the definition of wk, we deduce that

W2,φ(µk, π) ≤ a1p
1/2(β1 + o(1))(a1b1 − s)−1 + o(1) = a1p

1/2β1(a1b1 − s)−1 + o(1).

In turn, we conclude that

lim sup
k→∞

W2,φ(µk, π) ≤ a1p
1/2β1(a1b1 − s)−1,

for any 0 < s < a1b1. Taking the limit at both sides when s→ 0, one has

lim sup
k→∞

W2,φ(µk, π) ≤ p1/2β1b
−1
1 .(42)

This implies that W2,φ(µk, π)h2
k+1 has the order o(hk+1) whenever hk = a

k for a ∈ (0, a1].
Now let b = 2m−κ̃2

2 . There exists a ∈ (0, a1] such that hk = a
k is small enough and

ρk ≤ 1− bhk +
m2

2
h2
k

for all k ∈ N. Theorem 3.1 then implies

W2,φ(µk+1, π) ≤
(

1− bhk+1 +
m2

2
h2
k+1

)
W2,φ(µk, π) + β2p

1/2h
3/2
k+1 + β1p

1/2hk+1

≤ (1− bhk+1)W2,φ(µk, π) + p1/2(β1 + o(1))hk+1.

(43)

Repeating the above argument by using Remark D.5 gives lim sup
k→∞

W2,φ(µk, π) ≤ p1/2β1b
−1 = r0

as claimed. 4

2. Let αi = p
1
2βi for i = 1, 2. Define a function r : [0,∞)→ R such that r(0) = r0 and for all

t > 0,

r(t)
def.
=

tα1 + t
3
2α2

1−
√

(1−mt)2 + κ̃2t
.(44)

One can check that its derivative r′(t) > 0 for all 0 < t < min
(

2
m+M ,

2m−κ̃2
m2

)
and lim

t→0+
r(t) =

r0. If µk /∈ Br0(π), i.e., W2,φ(µk, π) > r0, by the continuity of r at 0, there exists 0 < hk+1 <
20



min
(

2m−κ̃2
m2 , 2M−κ̃2

M2 , 2
m+M

)
such that W2,φ(µk, π) > r(hk+1) =

hk+1α1+h
3
2
k+1α2

1−ρk+1
. For the µk+1

obtained from the algorithm (1), by Theorem 3.1, we know

W2,φ(µk+1, π) ≤ρk+1W2,φ(µk, π) + hk+1α1 + h
3
2
k+1α2

<ρk+1W2,φ(µk, π) + (1− ρk+1)W2,φ(µk, π)

=W2,φ(µk, π).

(45)

That is, the distance is strictly decreasing. 4

3. If µk ∈ Br0(π), the function√
(1−mt)2 + κ̃2t (W2,φ(µk, π)− r0) + tα1 + t

3
2α2

is continuous in t and negative at t = 0. Thus there exists

0 < hk+1 < min

(
2m− κ̃2

m2
,
2M − κ̃2

M2
,

2

m+M

)
such that ρk+1 (W2,φ(µk, π)− r0)+hk+1α1 +h

3
2
k+1α2 < 0. Therefore, by Theorem 3.1, we know

W2,φ(µk+1, π) ≤ ρk+1W2,φ(µk, π) + hk+1α1 + h
3
2
k+1α2 < ρk+1r0 < r0.(46)

That is, µk+1 ∈ Br0(π). 4

4. Suppose W2,φ(µk, π) = r0. For any r > r0, there exists

0 < hk+1 < min

(
2m− κ̃2

m2
,
2M − κ̃2

M2
,

2

m+M

)
such that r > r(hk+1) =

hk+1α1+h
3
2
k+1α2

1−ρk+1
. Therefore, by Theorem 3.1, we know

W2,φ(µk+1, π) ≤ ρk+1W2,φ(µk, π) + hk+1α1 + h
3
2
k+1α2 < ρk+1r0 + (1− ρk+1)r < r.(47)

That is, µk+1 ∈ Br(π). �

The following lemma comes from (Horn and Johnson, 2012, Theorem 7.4.1.4).

Lemma D.6. For any symmetric matrix M with rank p, we have Tr(M) ≤ p ‖M‖2.

The remark below follows clearly from the definition of the spectral norm.

Remark D.7. If M is a symmetric matrix, then ‖M‖2 = λmax(M).

Proposition 3.4. Firstly, we want to show

EL∼π

[
‖∇f(L)‖22

]
= EL∼π

[
Tr(D2f(L))

]
≤ p ·EL∼π

[∥∥D2f(L)
∥∥

2

]
≤MpR.(48)

For the equality in (48), from integration by parts, we have

EL∼π

[
‖∇f(L)‖22

]
=

∫
X
〈∇f(x),∇f(x)〉 · dπ

dx
(x)dx

=−
∫
X

〈
∇f(x),∇

(
dπ

dx

)
(x)

〉
dx

=−
∫
∂X

dπ

dx
(x)〈∇f(x),n〉dHp−1(x) +

∫
X

dπ

dx
(x)∆f(x)dx
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=

∫
∂X

〈
∇
(
dπ

dx

)
(x),n

〉
dHp−1(x) + EL∼π

[
Tr(D2f(L))

]
=EL∼π

[
Tr(D2f(L))

]
.

The first inequality in (48) can be derived using Lemma D.6 when M = D2f(x).
For the last inequality in (48), one only need to show

∥∥D2f(x)
∥∥

2
≤ M

∥∥D2φ(x)
∥∥

2
for all

x ∈ X . This can be derived from assumption (A4), as shown in Appendix B.
Secondly, since ‖M‖F ≤

√
p ‖M‖2 holds for any matrix M with rank p, one has

2
∥∥∥[D2φ(x)

] 1
2

∥∥∥2

F
≤ 2p

∥∥∥[D2φ(x)
] 1
2

∥∥∥2

2
= 2p · λmax(D2φ(x)) = 2p

∥∥D2φ(x)
∥∥

2
,

for every x ∈ X . Here the last equality comes from Remark D.7. Thus, integrating at both sides
against measure π gives

EL∼π

[∥∥∥√2[D2φ(L)]
1
2

∥∥∥2

F

]
≤ 2pR.(49)

Lastly, √
E
[
‖∇φ(L0)−∇φ(Ls)‖22

]
(50)

=

√√√√E

[∥∥∥∥∫ s

0
∇f(Lr)dr −

√
2

∫ s

0
[D2φ(Lr)]

1
2dBr

∥∥∥∥2

2

]
(51)

≤

√√√√E

[∥∥∥∥∫ s

0
∇f(Lr)dr

∥∥∥∥2

2

]
+

√√√√E

[∥∥∥∥∫ s

0

√
2[D2φ(Lr)]

1
2dBr

∥∥∥∥2

2

]
(52)

=

√√√√E

[∥∥∥∥∫ s

0
∇f(Lr)dr

∥∥∥∥2

2

]
+

√∫ s

0
E

[∥∥∥√2[D2φ(Lr)]
1
2

∥∥∥2

F

]
dr(53)

≤
∫ s

0

√
E
[
‖∇f(Lr)‖22

]
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√∫ s

0
E

[∥∥∥√2[D2φ(Lr)]
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F

]
dr(54)

=

∫ s

0

√
E
[
‖∇f(L0)‖22

]
dr +

√∫ s

0
E

[∥∥∥√2[D2φ(L0)]
1
2

∥∥∥2

F

]
dr(55)

=s

√
E
[
‖∇f(L0)‖22

]
+

√
sE

[∥∥∥√2[D2φ(L0)]
1
2

∥∥∥2

F

]
(56)

≤s
√
MpR+

√
2spR.(57)

Here (52) comes from the triangle inequality; (53) is derived from Itô’s isometry; (54) is obtained
from Minkowski’s inequality; (55) comes from the fact that Lr ∼ π for all r ≥ 0; and (57) is
from (48) and (49). �

APPENDIX E. NUMERICAL EXPERIMENTS

In this section, we support and illustrate our theoretical findings through a series of numerical
simulations involving the Dirichlet distribution supported on the 1D and 2D standard simplex.
Despite their simplicity, these numerical results clearly illustrate our analysis of the sampling
error.
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E.1. 1D Simplex. We consider sampling from π, where dπ ∝ xa1−1(1 − x)a2−1dx is the sym-
metric Dirichlet distribution in R2 with parameters a1 = a2 = 3. A natural choice of the entropy
φ is that in the fourth row of Table 1. Overall, we are in the situation of the last column in Table 2
with parameters (κ =

√
2, R = 2/3,m = 2,M = 2, δ = 0). The choice of (a1, a2) complies

with the condition κ̃ <
√

2m since κ̃ = κ =
√

2. In turn, r0 = 2/
√

3; recall the definition of
r0 from Section 3.1. Figure 1(a) shows the evolution of W2,φ(µk, π), where µk is the (empirical)
distribution of the sample at iteration k of the HRLMC algorithm, with various constant step-sizes,
starting from the Dirac measure at 10−4. Figure 1(b) displays the empirical distribution of Xk with
increasing time for a constant step-size h = 0.04 and three different initializations. One clearly
sees that the stationary distribution is the same independently of initialization. From Figure 1(a),
one observes that, with sufficiently small step-sizes, the Markov chain enters a Wasserstein ball of
radius r0 around π. However, even if running the HRLMC algorithm with vanishing step-sizes for
a very long time, the error does not vanish, which supports our theoretical prediction that the bias
term is inevitable.
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FIGURE 1. Results of sampling from the symmetric Dirichlet distribution in R2

with parameters a1 = a2 = 3 using HRLMC. Left: Evolution in time of the
sampling error for various constant step-sizes. A horizontal line at r0 = 2√

3
ma-

terializes the size of the bias term. Right: Visual display of the evolution of the
empirical distribution of Xk at different times, for three different initializations:
(a) Dirac measure at 10−4; (b) uniform measure on [0.3, 0.8]; (c) two Dirac mea-
sures at 0.2 and 0.8.

E.2. 2D Simplex. We now consider sampling on a 2D simplex (represented as a triangle in
[0, 1]2). Let dπ ∝ e−f(x1,x2)dx1dx2 be a Dirichlet distribution on this simplex where f(x1, x2) =
−2 log(x1)−2 log(x2)−2 log(1−x1−x2)+C, and C comes from the normalization constant in
dπ. We use φ(x1, x2) = − log(x1)− log(x2)− log(1−x1−x2). Figure 2(a) shows the sampling
error of the HRLMC algorithm initialized with a Dirac measure at (x1, x2) = (0.01, 0.99), and
with three different constant step-sizes. We observe the same behavior as in the 1D case, where
the sampling error does not vanish but rather stabilizes in a ball of radius r0 around π. Figure 2(b)
depicts the empirical distribution of Xk shown in contour plots with increasing time for various
initializations.
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FIGURE 2. Results of sampling from the symmetric Dirichlet distribution on the
2D standard simplex using HRLMC. Left: evolution in time of the sampling er-
ror for various constant step-sizes. Right: visual display of the evolution of the
empirical distribution of Xk shown as contour plots at different times, for three
different initializations: (a) Dirac measure at (0.01, 0.99); (b) mixture of Gauss-
ian distributions centered at (0.2, 0.5) and (0.5, 0.2), respectively; (c) mixture of
Gaussian distributions centered at (0.2, 0.2), (0.2, 0.5), and (0.5, 0.2), respecti-
vely.
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