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Transferable Utility Matching and Optimal Transport

Let X and Y be non-empty finite sets, u and v be probability measures
on X and Y, respectively. Denote by Πa(u, v) the set of measures on
X × Y that has the marginals u on X and v on Y. That is,

Πa(u, v) = {π|π is a measure on X × Y such that π(A × Y) = u(A)
and π(X × B) = v(B), for any A ⊆ X ,B ⊆ Y.}

1Monge (1781)
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Πa(u, v) = {π|π is a measure on X × Y such that π(A × Y) = u(A)
and π(X × B) = v(B), for any A ⊆ X ,B ⊆ Y.}

Given a continuous (or lower semi-continuous) function f, the optimal
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Πa(u, v) = {π|π is a measure on X × Y such that π(A × Y) = u(A)
and π(X × B) = v(B), for any A ⊆ X ,B ⊆ Y.}

Given a continuous (or upper semi-continuous) function g, the
transferable utility matching (optimal transport maximization) problem
is to find a maximizer of

sup
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π(g). (2)
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Dual problem

It is well known 1 that

inf
π∈Πa(u,v)

π(f) = sup
ϕ⊕ψ≤f

∑
x∈X

ϕ(x)u({x}) +
∑
y∈Y

ψ(y)v({y}), (3)

where ϕ : X → R and ψ : Y → R.

Similarly,

sup
π∈Πa(u,v)

π(g) = inf
ϕ⊕ψ≥g

∑
x∈X

ϕ(x)u({x}) +
∑
y∈Y

ψ(y)v({y}) (4)

This connects to the notion of stable matching2.

1Kantorovich (1942, 1948)
2Gale and Shapley (1962)

Kelvin Shuangjian ZHANG Monge-Kantorovich Duality with Nonadditive Measures 4/18



Dual problem

It is well known 1 that

inf
π∈Πa(u,v)

π(f) = sup
ϕ⊕ψ≤f

∑
x∈X

ϕ(x)u({x}) +
∑
y∈Y

ψ(y)v({y}), (3)

where ϕ : X → R and ψ : Y → R.
Similarly,

sup
π∈Πa(u,v)

π(g) = inf
ϕ⊕ψ≥g

∑
x∈X

ϕ(x)u({x}) +
∑
y∈Y

ψ(y)v({y}) (4)

This connects to the notion of stable matching2.

1Kantorovich (1942, 1948)
2Gale and Shapley (1962)

Kelvin Shuangjian ZHANG Monge-Kantorovich Duality with Nonadditive Measures 4/18



Dual problem

It is well known 1 that

inf
π∈Πa(u,v)

π(f) = sup
ϕ⊕ψ≤f

∑
x∈X

ϕ(x)u({x}) +
∑
y∈Y

ψ(y)v({y}), (3)

where ϕ : X → R and ψ : Y → R.
Similarly,

sup
π∈Πa(u,v)

π(g) = inf
ϕ⊕ψ≥g

∑
x∈X

ϕ(x)u({x}) +
∑
y∈Y

ψ(y)v({y}) (4)

This connects to the notion of stable matching2.

1Kantorovich (1942, 1948)
2Gale and Shapley (1962)

Kelvin Shuangjian ZHANG Monge-Kantorovich Duality with Nonadditive Measures 4/18



Nonadditive Measures

Definition (Capacity)
Let Z be a nonempty finite set, and let 2Z be the collection of all of its
subsets. A function γ : 2Z → R is called a capacitya if γ(∅) = 0, and
A ⊆ B implies γ(A) ≤ γ(B) for any A,B ⊂ Z,

aMontrucchio (2004)

Definition (Capacity)
Let Z be a nonempty finite set, and let 2Z be the collection of all of its
subsets. A function γ : 2Z → R is called a capacity if γ(∅) = 0, and
A ⊆ B implies γ(A) ≤ γ(B) for any A,B ⊂ Z, normalized if γ(Z) = 1.

Definition (Choquet integral)

Let Z be a nonempty finite set, γ be a capacity on Z, and f : Z → R+ be
a nonnegative function on Z. The Choquet integral of f with respect to γ
is defined to be:

γ(f) :=
∫ ∞

0
γ({f ≥ t}) dt. (5)

For a function g : Z → R that is not necessarily non-negative, then

γ(g) :=
∫ ∞

0
γ({g ≥ t}) dt +

∫ 0

−∞
(γ({g ≥ t})− γ(Z)) dt. (6)
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Optimal Transport with capacity marginals
let µ and ν be two normalized capacities on X and Y, respectively.
Denote by Π(µ, ν) the set of capacities on X × Y that has the
marginals µ on X and ν on Y. That is,

Π(µ, ν) = {π|π is a capacity on X × Y such that π(A × Y) = µ(A)
and π(X × B) = ν(B), for any A ⊆ X ,B ⊆ Y.}

Given a continuous function f, the Optimal Transport problem on
capacities aims to find optimizers of

inf
π∈Π(µ,ν)

π(f), (7)

and

sup
π∈Π(µ,ν)

π(f). (8)

Here π(f) is the Choquet integral.
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The ceiling and floor envelopes

Definition (floor and ceiling envelopes)
Let Z be a nonempty finite set, and let G ⊆ 2Z be a collection of
subsets containing Z and ∅. Suppose that a function G : G → R+

satisfies G(∅) = 0, and G(A) ≤ G(B) whenever A,B ∈ G, A ⊆ B.

The capacity on Z defined by:

G∗(B) = inf
B⊆A

G(A), for all B ∈ 2Z (9)

is called the ceiling envelope of G.
The capacity defined by:

G∗(B) = sup
A⊆B

G(A), for all B ∈ 2Z (10)

is called the floor envelope of G.
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Π(µ, ν) is nonempty

Definition (PX ,Y and P∗
X ,Y)

Given nonempty finite sets X ,Y, we define PX ,Y to be the collection of all
subsets of X × Y of the form A × B with A ⊆ X and B ⊆ Y.

We define P∗
X ,Y to be the collection of all sets either of the form X × B with

B ⊆ Y or A × Y with A ⊆ X .

Given nonempty finite sets X and Y and capacities µ on X and ν on Y,
we can define the function G : PX ,Y → R+ by G(A × B) = µ(A) · ν(B)
for A × B ∈ PX ,Y with A ⊆ X and B ⊆ Y.
Both the ceiling envelope G∗ and the floor envelope G∗ are capacites in
Π(µ, ν), showing in particular that

Π(µ, ν) is always nonempty.
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Characterization

Definition (π∗ and π∗)
For each A ⊆ X × Y, define the following:

π∗(A) = sup
π∈Π(µ,ν)

π(A), π∗(A) = inf
π∈Π(µ,ν)

π(A). (11)

Theorem (Ghossoub-Saunders-Z., 2022)
minπ∈Π(µ,ν) π(f) = π∗(f) and maxπ∈Π(µ,ν) π(f) = π∗(f).
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Characterization

For a set M ⊆ X × Y, define

MX := {x ∈ X : ∃z = (x, y) ∈ M}, (12)

and

M̃X := {x ∈ X : (x, y) ∈ M, ∀y ∈ Y} = ((Mc)X )
c, (13)

with a similar definition for MY and M̃Y .
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Characterization

Recall
maxπ∈Π(µ,ν) π(f) = π∗(f) and minπ∈Π(µ,ν) π(f) = π∗(f) .
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Characterization

Recall
maxπ∈Π(µ,ν) π(f) = π∗(f) and minπ∈Π(µ,ν) π(f) = π∗(f) .

Theorem (Ghossoub-Saunders-Z., 2022)
For any set N ⊆ X × Y,

π∗(N) =min(µ(NX ), ν(NY)),
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The cores

Definition (core)
Let γ be a normalized capacity on Z. The core of γ is the set C(γ) of all
probability measures v on 2Z such that v(A) ≥ γ(A) for all A ∈ 2Z .

Proposition
Let µ and ν be capacities on nonempty finite sets X and Y respectively.
Then the following are equivalent.

Both µ and ν have nonempty cores (i.e. C(µ) ̸= ∅ and C(ν) ̸= ∅).
There exists π ∈ Π(µ, ν) with nonempty core.

Proposition

(a) If C(π∗) ̸= ∅, then C(π) ̸= ∅ for all π ∈ Π(µ, ν).
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Proposition
Let µ and ν be capacities on nonempty finite sets X and Y respectively.
Then the following are equivalent.

Both µ and ν have nonempty cores (i.e. C(µ) ̸= ∅ and C(ν) ̸= ∅).
There exists π ∈ Π(µ, ν) with nonempty core.

Proposition
(a) If C(π∗) ̸= ∅, then C(π) ̸= ∅ for all π ∈ Π(µ, ν).
(b) If C(π∗) = ∅, then C(π) = ∅ for all π ∈ Π(µ, ν).
(c) In particular, C(π∗) ̸= ∅ iff C(µ) ̸= ∅ and C(ν) ̸= ∅.
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Cores of the optimal solutions

However, C(π∗) is typically empty.

Proposition (Core of π∗)
Suppose that µ and ν are normalized capacities on X and Y, and |X | ≥ 2,
|Y| ≥ 2. Then C(π∗) = ∅.

Proposition (Core of π∗)
If u is a probability measure on X and v is a probability measure on Y,
denote by Πa(u, v) the set of all probability measures on X × Y with
marginal distributions u and v respectively. Let µ and ν be normalized
capacities on X and Y respectively. Then:

C(π∗) = ∪u∈C(µ),v∈C(ν)Πa(u, v). (14)
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The Möbius transform

Definition
The Möbius transform of a capacity γ is defined as:

mγ(A) =
∑
B⊆A

(−1)|A\B|γ(B). (15)

The Choquet integral of f with respect to γ can be represented as:

γ(f) =
∑
B⊆X

Kf(B)γ(B) (16)

=
∑
A⊆X

mγ(A)min
x∈A

f(x) (17)

with:
Kf(B) :=

∑
B⊆A

(−1)|A\B|min
x∈A

f(x).
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Duality I

Theorem (Duality I, Ghossoub-Saunders-Z., 2022)
The dual of the minimization Optimal Transport problem is equivalent to

max
φ̂,ψ̂,ρ̂

∑
G⊆X

φ̂(G)µ(G) +
∑
F⊆Y

ψ̂(F)ν(F) (18)

subject to

φ̂(G) −
∑

w/∈G×Y
ρ̂(G × Y,w) +

∑
w∈G×Y

ρ̂((G × Y) \ {w},w) = Kc(G × Y), ∅ ̸= G $ X ;

ψ̂(F) −
∑

w/∈X×F
ρ̂(X × F,w) +

∑
w∈X×F

ρ̂((X × F) \ {w},w) = Kc(X × F), ∅ ̸= F $ Y;

φ̂(X ) + ψ̂(Y) +
∑

w
ρ̂((X × Y) \ {w},w) = Kc(X × Y);

−
∑
w/∈B

ρ̂(B,w) +
∑
w∈B

ρ̂(B \ {w},w) = Kc(B), B /∈ P∗
X ,Y ;

ρ̂ ≥ 0.

(19)
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Duality II

Theorem (Duality II, Ghossoub-Saunders-Z., 2022)

The dual of the minimization Optimal Transport problem is also equivalent
to

max
Lφ,Lψ ,ρ̂

∑
G⊆X

Lφ(G)mµ(G) +
∑
F⊆Y

Lψ(F)mν(F) (20)

Lφ(AX ) + Lψ(AY) +
∑
D⊇A

∑
w∈A

ρ̂(D \ {w},w) = min
(x,y)∈A

c(x, y), ∅ ̸= A ⊆ X × Y;

ρ̂ ≥ 0.
(21)
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Conclusion and Future work

Studied the Transferable Utility Matching and Optimal Transport
problems with capacity marginals
Provided characterizations of the optimal solutions and their cores
Built the duality theory
Results on infinite spaces is still open

Kelvin Shuangjian ZHANG Monge-Kantorovich Duality with Nonadditive Measures 17/18



Thank you!
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