Wasserstein Control of Mirror Langevin Monte Carlo

Kelvin Shuangjian Zhang*, Gabriel Peyré[†], Jalal Fadili[‡], Marcelo Pereyra[§]

- * [†] CNRS and DMA, École Normale Supérieure, Université PSL, Paris, France
 - [‡] Normandie Univ, ENSICAEN, UNICAEN, CNRS, GREYC, France
 - § School of Mathematical and Computer Sciences, Heriot-Watt University, UK

 * [†] This work is supported by the ERC project NORIA.

Optimal Transport and Applications, CMS 2020 Winter Meeting December 6, 2020

GOAL: Sample from a probability distribution π supported on $\mathcal{X} \subset \mathbb{R}^p$ in a high dimensional setting (i.e., for a large p).

KNOWN: $f \stackrel{\text{\tiny def.}}{=} -\log(\frac{d\pi}{d\mathbf{x}})$. $(f \in C^2(\mathcal{X}))$

Applications: Bayesian inference, generative modeling, etc.

(Overdamped) Langevin dynamics

$$d\mathbf{X}_t = -\nabla f(\mathbf{X}_t) dt + \sqrt{2} d\mathbf{B}_t,$$

(LD)

where $\{\mathbf{B}_t\}_{t>0}$ is a standard *p*-dimensional Brownian motion.

(Overdamped) Langevin dynamics

$$d\mathbf{X}_t = -\nabla f(\mathbf{X}_t) dt + \sqrt{2} d\mathbf{B}_t,$$

(LD)

where $\{\mathbf{B}_t\}_{t\geq 0}$ is a standard *p*-dimensional Brownian motion.

(Overdamped) Langevin dynamics

$$d\mathbf{X}_t = -\nabla f(\mathbf{X}_t) dt + \sqrt{2} d\mathbf{B}_t,$$

where $\{\mathbf{B}_t\}_{t>0}$ is a standard *p*-dimensional Brownian motion.

(Overdamped) Langevin dynamics

$$d\mathbf{X}_t = -\nabla f(\mathbf{X}_t) dt + \sqrt{2} d\mathbf{B}_t.$$
 (LD)

Euler-Maruyama discretization

$$\mathbf{X}_{k+1} = \mathbf{X}_k - h_{k+1} \nabla f(\mathbf{X}_k) + \sqrt{2h_{k+1}} \boldsymbol{\xi}_{k+1}; \qquad k = 0, 1, 2, \dots$$
(LMC)

• The continuous dynamics \mathbf{X}_t has π as its unique invariant measure.

• A discretization algorithm ensure the convergence of X_k .

Theorem (Dalalyan and Karagulyan, 2019)

Let μ_k be the law of X_k , $W_2(\cdot, \cdot)$ the Wasserstein 2-distance, and $h_k \equiv h \leq 2/(m+M)$. Assume

"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient." Dalalyan and Karagulyan, Stochastic Processes and their Applications, 129(12):5278–5311, 2019.

Theorem (Dalalyan and Karagulyan, 2019)

Let μ_k be the law of X_k , $W_2(\cdot, \cdot)$ the Wasserstein 2-distance, and $h_k \equiv h \leq 2/(m+M)$. Assume

$$\begin{split} \langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \mathbf{x} - \mathbf{x}' \rangle &\geq m \|\mathbf{x} - \mathbf{x}'\|_2^2; \qquad (\text{strong convexity}) \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 &\leq M \|\mathbf{x} - \mathbf{x}'\|_2. \qquad (\text{Lipschitz smoothness}) \end{split}$$

Then

"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient." Dalalyan and Karagulyan, Stochastic Processes and their Applications, 129(12):5278–5311, 2019.

Kelvin Shuangjian ZHANG Wasserstein Control of Mirror Langevin Monte Carlo ENS Paris; http://shuangjian.info

Theorem (Dalalyan and Karagulyan, 2019)

Let μ_k be the law of X_k , $W_2(\cdot, \cdot)$ the Wasserstein 2-distance, and $h_k \equiv h \leq 2/(m+M)$. Assume

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \mathbf{x} - \mathbf{x}' \rangle \ge m \|\mathbf{x} - \mathbf{x}'\|_2^2; \qquad (strong \ convexity) \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 \le M \|\mathbf{x} - \mathbf{x}'\|_2. \qquad (Lipschitz \ smoothness)$$

Then

Convergence

$$W_2(\mu_k,\pi) \leq (1-mh)^k W_2(\mu_0,\pi) + 1.65 \left(rac{M}{m}
ight) p^{rac{1}{2}} h^{rac{1}{2}}.$$
 (1)

"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient." Dalalyan and Karagulyan, Stochastic Processes and their Applications, 129(12):5278–5311, 2019.

Kelvin Shuangjian ZHANG Wasserstein Control of Mirror Langevin Monte Carlo ENS Paris; http://shuangjian.info

Theorem (Dalalyan and Karagulyan, 2019)

Let μ_k be the law of X_k , $W_2(\cdot, \cdot)$ the Wasserstein 2-distance, and $h_k \equiv h \leq 2/(m+M)$. Assume

$$\begin{split} \langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \mathbf{x} - \mathbf{x}' \rangle &\geq m \|\mathbf{x} - \mathbf{x}'\|_{2}^{2}; \qquad (\text{strong convexity}) \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_{2} &\leq M \|\mathbf{x} - \mathbf{x}'\|_{2}. \qquad (\text{Lipschitz smoothness}) \end{split}$$

Then

Iteration Complexity

It needs $K_{\varepsilon} \approx \frac{M^2 p}{m^3 \varepsilon^2} \log\left(\frac{1}{\varepsilon}\right)$ steps to reach ε -precision.

"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient." Dalalyan and Karagulyan, Stochastic Processes and their Applications, 129(12):5278–5311, 2019.

▶ 1D-plot on density

▶ 1D-plot on density

$$f = \sum_{i=1}^{p} (1 - a_i) \log(x_i) + b_i x_i + C.$$

Strong convexity and Lipschitz smoothness

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \mathbf{x} - \mathbf{x}' \rangle \ge m \|\mathbf{x} - \mathbf{x}'\|_2^2$$

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 \le M \|\mathbf{x} - \mathbf{x}'\|_2.$$

$$f = \sum_{i=1}^{p} (1 - a_i) \log(x_i) + b_i x_i + C.$$

Strong convexity and Lipschitz smoothness

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \mathbf{x} - \mathbf{x}' \rangle \ge m \|\mathbf{x} - \mathbf{x}'\|_2^2$$

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 \le M \|\mathbf{x} - \mathbf{x}'\|_2.$$

Kelvin Shuangjian ZHANG

Langevin Monte Carlo

$$\mathbf{X}_{k+1} = \mathbf{X}_k - h_{k+1} \nabla f(\mathbf{X}_k) + \sqrt{2h_{k+1}} \boldsymbol{\xi}_{k+1};$$

$$k = 0, 1, 2, \dots$$

$$\begin{split} \langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \mathbf{x} - \mathbf{x}' \rangle &\geq m \|\mathbf{x} - \mathbf{x}'\|_2^2; \qquad (\text{strong-convexity}) \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 &\leq M \|\mathbf{x} - \mathbf{x}'\|_2. \end{aligned}$$
 (Lipschitz smoothness)

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla(\mathbf{x}^2/2) - \mathbf{x}' \rangle \ge m \|\mathbf{x} - \mathbf{x}'\|_2^2; \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 \le M \|\mathbf{x} - \mathbf{x}'\|_2.$$

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \rangle \geq m \|\mathbf{x} - \mathbf{x}'\|_2^2; \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 \leq M \|\mathbf{x} - \mathbf{x}'\|_2.$$

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \rangle \geq m \|\nabla(\mathbf{x}^2/2) - \mathbf{x}'\|_2^2; \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 \leq M \|\mathbf{x} - \mathbf{x}'\|_2.$$

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \rangle \geq m \|\nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2)\|_2^2; \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\|_2 \leq M \|\mathbf{x} - \mathbf{x}'\|_2.$$

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \rangle \geq m \left\| \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \right\|_2^2; \\ \left\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}') \right\|_2 \leq M \left\| \nabla(\mathbf{x}^2/2) - \mathbf{x}' \right\|_2.$$

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \rangle \geq m \left\| \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \right\|_2^2; \\ \left\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}') \right\|_2 \leq M \left\| \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \right\|_2.$$

$$(2)$$

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \rangle \ge m \left\| \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \right\|_2^2; \\ \left\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}') \right\|_2 \le M \left\| \nabla(\mathbf{x}^2/2) - \nabla(\mathbf{x}'^2/2) \right\|_2.$$

$$(2)$$

Equivalent assumptions

Let
$$\phi = \frac{\mathbf{x}^2}{2}$$
,
 $\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \rangle \ge m \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \|_2^2$; (3)
 $\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}') \|_2 \le M \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \|_2$.

Equivalent assumptions

Let
$$\phi = \frac{\mathbf{x}^2}{2}$$
,

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \rangle \ge m \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \|_{2}^{2};$$

$$\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}') \|_{2} \le M \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \|_{2}.$$
 (3)

Current assumptions (weaker)

 \exists some $C^2(\mathcal{X})$ Legendre-type convex entropy ϕ on \mathcal{X} , such that

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \rangle \ge m \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \|_{2}^{2};$$

$$\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}') \|_{2} \le M \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \|_{2}.$$

$$(4)$$

Equivalent assumptions

Let
$$\phi = \frac{\mathbf{x}^2}{2}$$
,

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \rangle \ge m \left\| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \right\|_{2}^{2}; \qquad (3)$$
$$\left\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}') \right\|_{2} \le M \left\| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \right\|_{2}.$$

Relative strong convexity and Lipschitz-smoothness

 \exists some $C^2(\mathcal{X})$ Legendre-type convex entropy ϕ on \mathcal{X} , such that

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}'), \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \rangle \ge m \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \|_{2}^{2};$$

$$\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}') \|_{2} \le M \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \|_{2}.$$

$$(4)$$

• Riemannian Langevin dynamics on Hessian Manifold $(\mathcal{X}, D^2 \phi)^1$:

 $d\mathbf{X}_t = \left(\theta(\mathbf{X}_t) - [D^2\phi(\mathbf{X}_t)]^{-1}\nabla f(\mathbf{X}_t)\right)dt + \sqrt{2[D^2\phi(\mathbf{X}_t)]^{-1}}d\mathbf{B}_t, \quad (5)$

where $\theta(\mathbf{X}_t) \stackrel{\text{\tiny def.}}{=} -[D^2 \phi(\mathbf{X}_t)]^{-1} \mathrm{Tr} \left(D^3 \phi(\mathbf{X}_t) [D^2 \phi(\mathbf{X}_t)]^{-1} \right).$

¹ "Langevin diffusions and Metropolis-Hastings algorithms." Roberts and Stramer, Methodology and computing in applied probability, 4(4):337–357, 2002.

• Riemannian Langevin dynamics on Hessian Manifold $(\mathcal{X}, D^2 \phi)$:

$$d\mathbf{X}_{t} = \left(\theta(\mathbf{X}_{t}) - [D^{2}\phi(\mathbf{X}_{t})]^{-1}\nabla f(\mathbf{X}_{t})\right)dt + \sqrt{2[D^{2}\phi(\mathbf{X}_{t})]^{-1}}d\mathbf{B}_{t}, \quad (5)$$

where $\theta(\mathbf{X}_t) \stackrel{\text{\tiny def.}}{=} - [D^2 \phi(\mathbf{X}_t)]^{-1} \mathrm{Tr} \left(D^3 \phi(\mathbf{X}_t) [D^2 \phi(\mathbf{X}_t)]^{-1} \right).$

• Denoting $\mathbf{Y}_t \stackrel{\text{def.}}{=} \nabla \phi(\mathbf{X}_t)$, SDE (5) reads

$$d\mathbf{Y}_t = -\nabla f \circ \nabla \phi^*(\mathbf{Y}_t) dt + \sqrt{2[D^2 \phi^*(\mathbf{Y}_t)]^{-1}} d\mathbf{B}_t, \qquad (6)$$

here $\phi^*(\mathbf{y}) \stackrel{\text{def.}}{=} \sup_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{x}, \mathbf{y} \rangle - \phi(\mathbf{x})$ is the Legendre-Fenchel conjugate of ϕ .

¹ "Langevin diffusions and Metropolis-Hastings algorithms." Roberts and Stramer, Methodology and computing in applied probability, 4(4):337–357, 2002.

• Denoting $\mathbf{Y}_t \stackrel{\text{\tiny def.}}{=} \nabla \phi(\mathbf{X}_t)$, SDE (5) reads

$$d\mathbf{Y}_t = -\nabla f \circ \nabla \phi^*(\mathbf{Y}_t) dt + \sqrt{2[D^2 \phi^*(\mathbf{Y}_t)]^{-1}} d\mathbf{B}_t,$$
(6)

here $\phi^*(\mathbf{y}) \stackrel{\text{def.}}{=} \sup_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{x}, \mathbf{y} \rangle - \phi(\mathbf{x})$ is the Legendre-Fenchel conjugate of ϕ .

The Euler-Maruyama discretization of SDE (6) :

 $\mathbf{Y}_{k+1} \stackrel{\text{\tiny def.}}{=} \mathbf{Y}_k - h_{k+1} \nabla f(\nabla \phi^*(\mathbf{Y}_k)) + \sqrt{2h_{k+1}[D^2 \phi^*(\mathbf{Y}_k)]^{-1}} \boldsymbol{\xi}_{k+1}.$ (7)

¹ "Langevin diffusions and Metropolis-Hastings algorithms." Roberts and Stramer, Methodology and computing in applied probability, 4(4):337–357, 2002.

The Euler-Maruyama discretization of SDE (6) :

$$\boldsymbol{I}_{k+1} \stackrel{\text{def.}}{=} \boldsymbol{\mathsf{Y}}_{k} - h_{k+1} \nabla f(\nabla \phi^{*}(\boldsymbol{\mathsf{Y}}_{k})) + \sqrt{2h_{k+1}[D^{2}\phi^{*}(\boldsymbol{\mathsf{Y}}_{k})]^{-1}\boldsymbol{\xi}_{k+1}}.$$
(7)

• Using $\mathbf{X}_k = \nabla \phi^* (\mathbf{Y}_k)$, we derive the **HRLMC** algorithm

$$\mathbf{X}_{k+1} \stackrel{\text{def.}}{=} \nabla \phi^* \Big(\nabla \phi(\mathbf{X}_k) - h_{k+1} \nabla f(\mathbf{X}_k) + \sqrt{2h_{k+1}[D^2 \phi(\mathbf{X}_k)]} \boldsymbol{\xi}_{k+1} \Big).$$
(HRLMC)

¹ "Langevin diffusions and Metropolis-Hastings algorithms." Roberts and Stramer, Methodology and computing in applied probability, 4(4):337–357, 2002.

• Using $\mathbf{X}_k = \nabla \phi^* (\mathbf{Y}_k)$, we derive the **HRLMC** algorithm

¹ "Langevin diffusions and Metropolis-Hastings algorithms." Roberts and Stramer, Methodology and computing in applied probability, 4(4):337–357, 2002.

$$\mathbf{X}_{k+1} \stackrel{\text{\tiny def.}}{=} \nabla \phi^* \Big(\nabla \phi(\mathbf{X}_k) - h_{k+1} \nabla f(\mathbf{X}_k) \Big).$$
(Mirror Descent)

¹ "Langevin diffusions and Metropolis-Hastings algorithms." Roberts and Stramer, *Methodology and computing in applied probability*, 4(4):337–357, 2002.

• Self-concordance-like condition on ϕ :

$$\sqrt{2} \left\| D^2 \phi(\mathbf{x})^{\frac{1}{2}} - D^2 \phi(\mathbf{x}')^{\frac{1}{2}} \right\|_{F} \leq \kappa \left\| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \right\|_{2}.$$

• Self-concordance-like condition on ϕ :

$$\sqrt{2} \left\| D^2 \phi(\mathbf{x})^{\frac{1}{2}} - D^2 \phi(\mathbf{x}')^{\frac{1}{2}} \right\|_{\mathcal{F}} \leq \kappa \left\| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \right\|_2.$$

• Bound on the commutator of $D^2\phi$ and D^2f .

 $\left\|\left[(D^2\phi(\mathbf{x}))^{-1}, D^2f(\mathbf{x})\right]\right\|_2 \leq \delta.$

• Self-concordance-like condition on ϕ :

$$\sqrt{2} \left\| D^2 \phi(\mathbf{x})^{\frac{1}{2}} - D^2 \phi(\mathbf{x}')^{\frac{1}{2}} \right\|_{F} \leq \kappa \left\| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \right\|_{2}.$$

• Bound on the commutator of $D^2\phi$ and D^2f .

 $\left\|\left[(D^2\phi(\mathbf{x}))^{-1}, D^2f(\mathbf{x})\right]\right\|_2 \leq \delta.$

Moment condition on the Hessian of φ:

$$R \stackrel{\text{\tiny def.}}{=} \mathbf{E}_{\mathbf{X} \sim \pi} \left[\left\| D^2 \phi(\mathbf{X}) \right\|_2 \right] = \int_{\mathcal{X}} \left\| D^2 \phi(\mathbf{x}) \right\|_2 e^{-f(\mathbf{x})} \mathrm{d}\mathbf{x} < +\infty.$$

• Self-concordance-like condition on ϕ :

$$\sqrt{2} \left\| D^2 \phi(\mathbf{x})^{\frac{1}{2}} - D^2 \phi(\mathbf{x}')^{\frac{1}{2}} \right\|_{F} \leq \kappa \left\| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \right\|_{2}.$$

• Bound on the commutator of $D^2\phi$ and D^2f .

 $\left\|\left[(D^2\phi(\mathbf{x}))^{-1}, D^2f(\mathbf{x})\right]\right\|_2 \leq \delta.$

Moment condition on the Hessian of φ:

$$R \stackrel{\text{\tiny def.}}{=} \mathbf{E}_{\mathbf{X} \sim \pi} \left[\left\| D^2 \phi(\mathbf{X}) \right\|_2 \right] = \int_{\mathcal{X}} \left\| D^2 \phi(\mathbf{x}) \right\|_2 e^{-f(\mathbf{x})} \mathrm{d}\mathbf{x} < +\infty.$$

Interaction of key parameters:

$$ilde{\kappa} \stackrel{ ext{\tiny def.}}{=} \sqrt{\kappa^2 + rac{\delta(4M+\delta)}{2(m+M)}} < \sqrt{2m}.$$

Kelvin Shuangjian ZHANG

Wasserstein Control of Mirror Langevin Monte Carlo

ENS Paris; http://shuangjian.info

Case 1

Gamma distribution. $f = \sum_{i=1}^{p} (1 - a_i) \log(x_i) + b_i x_i + C$; take $\phi = -\sum_{i=1}^{p} \log(x_i)$. (Burg's entropy)

Case 1

Gamma distribution. $f = \sum_{i=1}^{p} (1 - a_i) \log(x_i) + b_i x_i + C$; take $\phi = -\sum_{i=1}^{p} \log(x_i)$. (Burg's entropy)

Kelvin Shuangjian ZHANG

Wasserstein Control of Mirror Langevin Monte Carlo ENS Paris; http://shuangjian.info

Case 1

Gamma distribution. $f = \sum_{i=1}^{p} (1 - a_i) \log(x_i) + b_i x_i + C$; take $\phi = -\sum_{i=1}^{p} \log(x_i)$. (Burg's entropy)

Case 2

Dirichlet distribution. $f = (1 - a_1) \log(x) + (1 - a_2) \log(1 - x) + C$; take $\phi = -\log(x) - \log(1 - x)$. (Burg's entropy on 1D Simplex)

Case 2

Dirichlet distribution. $f = (1 - a_1) \log(x) + (1 - a_2) \log(1 - x) + C$; take $\phi = -\log(x) - \log(1 - x)$. (Burg's entropy on 1D Simplex)

Case 1

Gamma distribution. $f = \sum_{i=1}^{p} (1 - a_i) \log(x_i) + b_i x_i + C$; take $\phi = -\sum_{i=1}^{p} \log(x_i)$. (Burg's entropy)

Case 2

Dirichlet distribution. $f = (1 - a_1) \log(x) + (1 - a_2) \log(1 - x) + C$; take $\phi = -\log(x) - \log(1 - x)$. (Burg's entropy on 1D Simplex)

	Case 1	Case 2	
т	$\min_i \{a_i - 1\}$	$\min\{a_1 - 1, a_2 - 1\}$	
М	$\max_i \{a_i - 1\}$	$\max\{a_1-1,a_2-1\}$	
κ	$\sqrt{2}$	$\sqrt{2}$	
δ	0	0	
R	$\sum_i (a_i - 3)!/b_i^{a_i - 2}$	$\frac{(a_1-3)!(a_2-1)!+(a_1-1)!(a_2-3)!}{(a_1+a_2-3)!}$	
$\tilde{\kappa} < \sqrt{2m}$	$a_i > 2, \forall i$	$a_1, a_2 > 2$	

Wasserstein Control of Mirror Langevin Monte Carlo

• Let *d* be the Riemannian distance associated with the squared Hessian metric $[D^2\phi(\mathbf{x})]^2$. Define

$$W_{2,\phi}^{2}(\mu,\nu) \stackrel{\text{\tiny def.}}{=} \inf_{\mathbf{x} \sim \mu, \mathbf{x}' \sim \nu} \mathbf{E} \left[d^{2}(\mathbf{x},\mathbf{x}') \right] = \inf_{\mathbf{x} \sim \mu, \mathbf{x}' \sim \nu} \mathbf{E} \left[\left\| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{x}') \right\|_{2}^{2} \right]$$

Note: When $\phi(\mathbf{x}) = \|\mathbf{x}\|^2 / 2$, one recovers the standard W_2 distance used in the Euclidean Langevin Monte Carlo (1).

• Define
$$W_{2,\phi}^2(\mu,\nu) \stackrel{\text{\tiny def.}}{=} \inf_{\mathbf{x}\sim\mu,\mathbf{x}'\sim\nu} \mathbf{E} \left[\|\nabla\phi(\mathbf{x}) - \nabla\phi(\mathbf{x}')\|_2^2 \right].$$

Theorem (Z.-Peyré-Fadili-Pereyra, COLT2020)

Under the above assumptions, assume $h_k \equiv h$ is sufficiently small. Then

$$W_{2,\phi}(\mu_k,\pi) \leq \rho^k W_{2,\phi}(\mu_0,\pi) + h^{\frac{3}{2}}(1-\rho)^{-1} p^{\frac{1}{2}} M^{\frac{1}{2}} R^{\frac{1}{2}} \left(1.65\sqrt{M} + \kappa/\sqrt{3} \right) \\ + h(1-\rho)^{-1} p^{\frac{1}{2}} \kappa R^{\frac{1}{2}},$$

where the contraction ratio $\rho \stackrel{\text{\tiny def.}}{=} \sqrt{(1-mh)^2 + h \tilde{\kappa}^2} < 1.$

Theorem (Z.-Peyré-Fadili-Pereyra, COLT2020)

Under the above assumptions, assume $h_k \equiv h$ is sufficiently small. Then

$$W_{2,\phi}(\mu_k,\pi) \leq \rho^k W_{2,\phi}(\mu_0,\pi) + h^{\frac{3}{2}}(1-\rho)^{-1} p^{\frac{1}{2}} M^{\frac{1}{2}} R^{\frac{1}{2}} \left(1.65\sqrt{M} + \kappa/\sqrt{3}\right) \\ + h(1-\rho)^{-1} p^{\frac{1}{2}} \kappa R^{\frac{1}{2}},$$

where the contraction ratio $ho \stackrel{\text{\tiny def.}}{=} \sqrt{(1-mh)^2+h \tilde{\kappa}^2} < 1.$

Contraction

Under vanishing step-sizes, the HRLMC algorithm contracts toward a Wasserstein ball centered at the target distribution π with radius

$$r_0 \stackrel{\text{\tiny def.}}{=} \frac{2\kappa p^{\frac{1}{2}} R^{\frac{1}{2}}}{2m - \tilde{\kappa}^2}$$

Kelvin Shuangjian ZHANG Wasserstein Control of Mirror Langevin Monte Carlo ENS Paris; http://shuangjian.info

Theorem (Z.-Peyré-Fadili-Pereyra, COLT2020)

Under the above assumptions, assume $h_k \equiv h$ is sufficiently small. Then

$$W_{2,\phi}(\mu_k,\pi) \leq \rho^k W_{2,\phi}(\mu_0,\pi) + h^{\frac{3}{2}}(1-\rho)^{-1} p^{\frac{1}{2}} M^{\frac{1}{2}} R^{\frac{1}{2}} \left(1.65\sqrt{M} + \kappa/\sqrt{3}\right) \\ + h(1-\rho)^{-1} p^{\frac{1}{2}} \kappa R^{\frac{1}{2}},$$

where the contraction ratio $ho \stackrel{\text{\tiny def.}}{=} \sqrt{(1-mh)^2+h \tilde{\kappa}^2} < 1.$

Contraction

Under vanishing step-sizes, the HRLMC algorithm contracts toward a Wasserstein ball centered at the target distribution π with radius

$$r_0 \stackrel{\text{\tiny def.}}{=} \frac{2\kappa p^{\frac{1}{2}}R^{\frac{1}{2}}}{2m-\tilde{\kappa}^2} = 0, \text{ when } \phi = \frac{\mathbf{x}^2}{2}.$$

Kelvin Shuangjian ZHANG Wasserstein Control of Mirror Langevin Monte Carlo ENS Paris; http://shuangjian.info

Theorem (Z.-Peyré-Fadili-Pereyra, COLT2020)

Under the above assumptions, assume $h_k \equiv h$ is sufficiently small. Then

$$W_{2,\phi}(\mu_k,\pi) \leq \rho^k W_{2,\phi}(\mu_0,\pi) + h^{\frac{3}{2}}(1-\rho)^{-1}\rho^{\frac{1}{2}}M^{\frac{1}{2}}R^{\frac{1}{2}}\left(1.65\sqrt{M} + \kappa/\sqrt{3}\right) \\ + h(1-\rho)^{-1}\rho^{\frac{1}{2}}\kappa R^{\frac{1}{2}},$$

where the contraction ratio $ho \stackrel{\text{def.}}{=} \sqrt{(1-mh)^2+h \tilde{\kappa}^2} < 1.$

Iteration Complexity

$$K_{\varepsilon} \approx \frac{pMR(\sqrt{M}+\kappa)^2}{(2m-\tilde{\kappa}^2)^3} \frac{1}{\varepsilon^2} \log\left(\frac{1}{\varepsilon}\right)$$
 steps to reach $(r_0 + \varepsilon)$ -precision.

• Dirichlet distribution $d\pi \propto x^2(1-x)^2 dx$ on 1D Simplex:

Visual display of the evolution of the empirical distribution of X_k for three different initializations: (a) Dirac measure at 10^{-4} ; (b) uniform measure on [0.3, 0.8]; (c) two Dirac measures at 0.2 and 0.8.

• Dirichlet distribution $d\pi \propto x^2(1-x)^2 dx$ on 1D Simplex:

• Dirichlet distribution $d\pi \propto x_1^2 x_2^2 (1 - x_1 - x_2)^2 dx_1 dx_2$ on 2D Simplex:

• Dirichlet distribution $d\pi \propto x_1^2 x_2^2 (1 - x_1 - x_2)^2 dx_1 dx_2$ on 2D Simplex:

First guarantees of HRLMC which show that it contracts into a Wasserstein ball centered at the desired invariant distribution.

- First guarantees of HRLMC which show that it contracts into a Wasserstein ball centered at the desired invariant distribution.
- Our method recovers the state-of-the-art non-asymptotic sampling error bounds in Wasserstein distance for the quadratic case.

- First guarantees of HRLMC which show that it contracts into a Wasserstein ball centered at the desired invariant distribution.
- Our method recovers the state-of-the-art non-asymptotic sampling error bounds in Wasserstein distance for the quadratic case.

Numerics also support our theory.

- First guarantees of HRLMC which show that it contracts into a Wasserstein ball centered at the desired invariant distribution.
- Our method recovers the state-of-the-art non-asymptotic sampling error bounds in Wasserstein distance for the quadratic case.
 - Numerics also support our theory.

Future work

▶ We conjecture that the bias term is inevitable. How to prove it?

- First guarantees of HRLMC which show that it contracts into a Wasserstein ball centered at the desired invariant distribution.
- Our method recovers the state-of-the-art non-asymptotic sampling error bounds in Wasserstein distance for the quadratic case.
 - Numerics also support our theory.

Future work

- We conjecture that the bias term is inevitable. How to prove it?
- What is a provably good discretization of the Riemannian Langevin dynamics for general manifolds?

Thank you very much!